

Seminararbeit 2022/23

Thema:

Der Fast-Inverse-Square-Root-Algorithmus

mit Bezug zur 3D-Computergrafik

Name: Paul Schulz

Klasse: 13FT1

Betreuende Lehrkraft: OStR Stefan Baier
 Dipl. Math. Johannes Ghiroga

Maximilian-Kolbe-Schule

Kerschensteinerstraße 7

92318 Neumarkt i. d. OPf.

1 Vorwort .. 1

2 Hinführung zum Thema ... 2

2.1 Aufbau der Arbeit .. 2

3 Bezug zur 3D-Computergrafik .. 3

3.1 Normalisierung von Vektoren .. 3

3.2 Beispiel Lichtintensität ... 4

3.3 Notwendigkeit des Algorithmus... 5

4 Darstellung von Zahlen in Computersystemen .. 6

4.1 Natürliche Zahlen .. 6

4.2 Fließkommazahlen .. 7

5 Approximation der binären Logarithmus-Funktion ... 9

5.1 Linearisierung .. 9

5.2 Der binäre Logarithmus einer Fließkommazahl ... 12

6 Das Newton-Verfahren .. 13

6.1 Grafische Herleitung ... 13

6.2 Berechnung von Termen... 14

7 Der Algorithmus ... 15

7.1 Berechnen der ersten Annäherung ... 15

7.2 Anwendung des Newton-Verfahrens .. 17

8 Effizienz der Berechnungen.. 17

8.1 Geschwindigkeit .. 18

8.2 Genauigkeit ... 18

8.3 Heutige Relevanz .. 19

9 Schlussbemerkung .. 20

10 Abbildungsverzeichnis .. 21

11 Literaturverzeichnis ... 22

Paul Schulz 2023 1

1 Vorwort

Im Jahr 2002 und 2003 begannen in verschiedenen Internet-Foren Diskussionen über ein

bestimmtes Stück Programmcode. Es handelte sich um einen Ausschnitt aus dem Quelltext des

1999 veröffentlichten Computerspiels Quake III Arena, einem Ego-Shooter-Spiel

(McEniry 2007: S. 1).

float Q_rsqrt(float number) {

 long i;

 float x2, y;

 const float threehalfs = 1.5F;

 x2 = number * 0.5F;

 y = number;

 i = * (long *) &y; // evil floating point bit level hacking

 i = 0x5f3759df - (i >> 1); // what the fuck?

 y = * (float *) &i;

 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

 return y;

}

Abbildung 1-1 zeigt den Quellcode einer Funktion aus dem Spiel Quake III Arena in leicht abgewandelter

Form. Der Ausschnitt ist in der Programmiersprache C geschrieben.

Dem Namen der Funktion zufolge, berechnet der Code den Kehrwert der Wurzel einer positiven

Zahl. Jedoch erscheinen die Berechnungen selbst für Entwickler mit großer Erfahrung in der

Programmiersprache C nicht nachvollziehbar. Als besonders fragwürdig erscheint hierbei der

Ursprung der hexadezimalen Konstante 5𝐹3759𝐷𝐹. Genauso ungewöhnlich ist die Interpretation

einer Fließkommazahl als natürliche Zahl. Die Kommentare der Entwickler im Quellcode tragen

ebenfalls wenig zum Verständnis bei.

Was zunächst willkürlich erschien, entpuppte sich als ein genialer, schneller und gut durchdachter

Algorithmus, welcher dem Computerspiel eine bessere Performance verleihen sollte. In den

folgenden Jahren erlangte das Verfahren unter dem englischen Namen Fast-Inverse-Square-

Root-Algorithmus über das Internet große Popularität (McEniry 2007: S. 1).

Als gelernter Fachinformatiker für Anwendungsentwicklung erfuhr ich erstmals von der Existenz

dieses Algorithmus durch einen Arbeitskollegen. Jedoch fehlten mir zu diesem Zeitpunkt die

mathematischen Kenntnisse zum Verständnis des Verfahrens. Während des Seminars erinnerte

ich mich durch einen Hinweis von Herrn Baier an den Algorithmus. Damit stand das Thema

meiner Arbeit fest.

Diese Seminararbeit hat zum Ziel den Algorithmus mathematisch herzuleiten und verständlich zu

erklären. Außerdem wird seine Bedeutung für die 3D-Computergrafik erläutert und damit ein Blick

auf den Ursprung des Algorithmus geworfen.

Paul Schulz 2023 2

2 Hinführung zum Thema

Diese Seminararbeit behandelt den Fast-Inverse-Square-Root-Algorithmus. Diese Bezeichnung

wird von jetzt an mit FISR-Algorithmus abgekürzt. Das Verfahren dient zur Berechnung der

reziproken Quadratwurzel einer positiven rationalen Zahl.

 𝑓(𝑥) =
1

√𝑥
; 𝐷𝑓 = ℚ+ (2-1)

Der Algorithmus hat insbesondere eine schnelle und effiziente Berechnung zum Ziel, weswegen

lediglich eine hinreichend genaue Annäherung (Approximation) an das tatsächliche Ergebnis

berechnet wird (McEniry 2007: S. 1). Mit einem erhöhten Rechenaufwand wäre jedoch auch eine

wesentlich genauere Berechnung möglich.

Dem Wort Algorithmus wird folgende Definition zugrunde gelegt:

„Algorithmen sind Vorschriften für die Lösung eines Problems, welche die Handlungen und ihre

Abfolge […] beschreiben.“ (Heinisch et al. 2010: S. 4)

Algorithmen stellen damit eine Schritt-für-Schritt-Anleitung zur Lösung eines (z.B.

mathematischen) Problems dar. Beispiele für bekannte mathematische Algorithmen sind: Der

Euklidische Algorithmus oder die Polynomdivision. Aber auch alltägliche Dinge, wie Kochrezepte

oder Montage-Anleitungen können als Algorithmen verstanden werden

(Heinisch et al. 2010: S. 4).

Da die Herleitung und Erklärung des Algorithmus vor allem theoretischer Natur sind, wurde

eigens für diese Seminararbeit eine Demo-Website programmiert. Auf dieser kann der

Algorithmus praktisch ausprobiert und Schritt-für-Schritt nachvollzogen werden. Die Web-

Anwendung kann unter der folgenden URL aufgerufen werden: https://fisr.schulz-paul.de

2.1 Aufbau der Arbeit

Der FISR-Algorithmus wurde ursprünglich für die 3D-Computergrafik entworfen und eingesetzt.

Kapitel 3 erläutert daher den konkreten Bezug zur Computergrafik und damit die Notwendigkeit

eines solchen Algorithmus.

Die Kapitel 4, 5 und 6 vermitteln wichtige mathematische Grundlagen, die zum weiteren

Verständnis notwendig sind.

Schließlich beschäftigen sich die Kapitel 7 und 8 ausführlich mit dem Algorithmus selbst. Er wird

dabei mathematisch hergeleitet und bewiesen. Da es sich bei der Berechnung um eine

Approximation handelt, wird außerdem auf die Geschwindigkeit und Genauigkeit eingegangen.

https://fisr.schulz-paul.de/

Paul Schulz 2023 3

Alle wichtigen Abbildungen, Definitionen, Formeln und Sätze sind mit der Kapitelnummer und

einer innerhalb des Kapitels fortlaufenden Nummer beschriftet. Im Verlauf der Ausführungen wird

auf vorangegangene Aussagen mithilfe eben dieser Beschriftungen verwiesen.

3 Bezug zur 3D-Computergrafik

Die Aufgabe der Computergrafik ist es, aus einer abstrakten Objektbeschreibung ein Bild zu

generieren. Die Objektbeschreibung umfasst dabei üblicherweise Informationen über Form,

Position oder Farbgebung der abgebildeten Objekte. Aber auch die Position von Lichtquellen,

Reflexionseigenschaften oder Transparenz von Objekten sind Teil dieser Beschreibung

(Nischwitz et al. 2019: S. 6f.).

In der 3D-Computergrafik werden dabei Objekte zunächst im 3-dimensionalen Raum positioniert.

Da die Ausgabegeräte allerdings üblicherweise flach sind, muss das Bild noch in ein 2-

dimensionales Bild umgewandelt werden. Dabei kommen verschiedenen mathematische

Verfahren und Konzepte zum Einsatz (Nischwitz et al. 2019: S. 205f.).

Die Position von Objekten im Raum wird dabei üblicherweise durch Vektoren beschrieben.

Insbesondere bei der Berechnung von Beleuchtung und Reflexionseffekten kommen dabei

normalisierte Vektoren zum Einsatz.

3.1 Normalisierung von Vektoren

Unter Normalisierung eines Vektors versteht man die Skalierung seiner Länge auf 1 LE unter

Beibehaltung seiner Richtung (Aryeh 2020: TC. 00:01:32 – 00:01:40).

Gegeben sei der 3-dimensionale Vektor 𝑣 ≠ 0⃗⃗:

 𝑣 = (

𝑣1

𝑣2

𝑣3

) ; 𝑣1, 𝑣2, 𝑣3 ∈ ℝ (3-1)

Für den Betrag (die Länge) desselben Vektors gilt demnach:

 |𝑣| = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 (3-2)

Werden alle Vektorkoordinaten von 𝑣 mit einem Faktor 𝑥 ∈ ℝ0
+ multipliziert, so gilt für den Betrag

des neuen Vektors:

 |𝑥 ⋅ 𝑣| = √(𝑥 ⋅ 𝑣1)2 + (𝑥 ⋅ 𝑣2)2 + (𝑥 ⋅ 𝑣3)2 = √𝑥2 ⋅ (𝑣1
2 + 𝑣2

2 + 𝑣3
2) = 𝑥 ⋅ |𝑣| (3-3)

Paul Schulz 2023 4

Somit gilt für den normalisierten Vektor 𝑣0⃗⃗⃗⃗⃗ mit |𝑣0⃗⃗⃗⃗⃗| = 1:

 𝑣0⃗⃗⃗⃗⃗ =
1

|𝑣|
⋅ 𝑣 =

1

√𝑣1
2 + 𝑣2

2 + 𝑣3
2

⋅ 𝑣 (3-4)

Der Skalierungsfaktor des Vektors 𝑣 entspricht dabei der Funktion 𝑓 aus (2-1).

3.2 Beispiel Lichtintensität

Die Beleuchtung ist in der 3D-Computergrafik dafür verantwortlich, dass Objekte auf dem 2-

dimensionalen Bildschirm für das menschliche Auge 3-dimensional erscheinen. Durch

Reflexions- und Schattierungseffekte wird dem Beobachter die Tiefe des Bildes vorgetäuscht

(Nischwitz et al. 2019: S. 317).

In folgendem Beispiel soll die Verwendung normalisierter Vektoren bei der Beleuchtungs-

Rechnung demonstriert werden. Es wird die Berechnung der von einer Lichtquelle auf ein

Oberflächenstück einfallende Lichtintensität beschrieben. Abbildung 3-1 zeigt den geometrischen

Aufbau als Grundlage für die Berechnung.

Abbildung 3-1 zeigt den Einfall eines Lichtstrahls 𝑙 auf eine ebene

Oberfläche mit dem Flächeninhalt 𝐴. Der Lichtvektor zeigt dabei

zur Lichtquelle hin. 𝑛⃗⃗ ist der Normalenvektor auf die Oberfläche.

Die Skizze dient als Grundlage der Berechnung.

Es gelten die folgenden Festlegungen:

𝑛⃗⃗, 𝑙 ∈ ℝ3; 𝐴 ∈ ℝ+; 𝛼 ∈ [0°; 90°]

Der Vektor 𝑛⃗⃗ steht senkrecht auf der Oberfläche.

(3-5)

Paul Schulz 2023 5

Gegeben seien die Vektoren 𝑛⃗⃗ und 𝑙 und der Flächeninhalt 𝐴, nicht aber der Winkel 𝛼. Für die

Berechnung der Lichtintensität 𝐼 ∈ ℝ0
+ ist nur die Projektion des Oberflächenstücks auf eine zum

Lichtvektor 𝑙 senkrechte Ebene relevant (Nischwitz et al. 2019: S. 333). Dabei besteht folgender

Zusammenhang:

 𝐼 ~ 𝐴⊥ (3-6)

Der Abbildung 3-1 kann entnommen werden, dass sich die projizierte Fläche 𝐴⊥ wie folgt

berechnen lässt:

 𝐴⊥ = 𝐴 ⋅ cos(𝛼) (3-7)

Bekanntlich kann der Winkel zwischen zwei Vektoren mithilfe des Skalarprodukts ermittelt

werden.

 𝑛⃗⃗ ∘ 𝑙 = |𝑎⃗| ⋅ |𝑙| ⋅ cos(𝛼) (3-8)

Sind die beiden Vektoren normalisiert, und haben daher die Länge 1, gilt folgender

Zusammenhang (Nischwitz et al. 2019: S. 333):

𝑛⃗⃗ ∘ 𝑙 = cos(𝛼)

⇒ 𝐴⊥ = 𝐴 ⋅ (𝑛⃗⃗ ∘ 𝑙)

(3-9)

Auf diese Weise lässt sich sehr einfach, allein mit Multiplikation, die Lichtintensität berechnen.

3.3 Notwendigkeit des Algorithmus

Das weite Feld der Computer-Grafik kann in die Echtzeit- bzw. Interaktive- und Nichtechtzeit-

Computer-Grafik eingeteilt werden. Der Unterschied liegt dabei in der benötigten Zeit für die

Bildberechnung. Für das Exportieren eines Bildes aus einer CAD-Anwendung ist beispielsweise

die Dauer der Bildgenerierung nicht weiter relevant. Bei interaktiven Anwendungen allerdings

(z.B. einem Flugsimulator) ist es essenziell, dass zwischen einer Benutzereingabe und einer

Reaktion der Anwendung nicht zu viel Zeit vergeht (Nischwitz et al. 2019: S. 25f.). Üblicherweise

spricht man ab einer Bildwiederholrate von 1 Hz von interaktiver Computer-Grafik. Von einem

flüssigen Bild kann man aber erst ab ca. 30 Hz sprechen. Das bedeutet das pro Sekunde 30

Bilder berechnet werden müssen (Nischwitz et al. 2019: S. 26f.).

Berechnungen wie die aus Kapitel 3.2 müssen dabei für jeden Vertex (Eckpunkt eines Objekts)

durchgeführt werden. Bei einer entsprechend hohen Anzahl an Vertices müssen dafür Vektoren

Paul Schulz 2023 6

millionenfach pro Sekunde normalisiert werden. Diese Art der Berechnungen stellen einen

Flaschenhals in der Computergrafik dar (Aryeh 2020: TC. 00:02:24 – 00:03:00).

Im Vergleich zur Addition und Multiplikation sind Operationen wie Division und Wurzelziehen auch

für Computersysteme vergleichsweise zeitaufwändig (Noe 2019). Berechnungen wie die der

Funktion 𝑓 aus (2-1) in sehr großer Anzahl durchzuführen, erfordert deshalb einen effizienten

Algorithmus. Der FISR-Algorithmus stellt ein solches ausgeklügeltes Verfahren dar, das speziell

für die Computergrafik entworfen und eingesetzt wurde (Aryeh 2020: TC. 00:03:00 – 00:03:20).

4 Darstellung von Zahlen in Computersystemen

Computersysteme stellen Zahlen intern nicht in dem am meisten verwendeten Stellenwertsystem,

dem Dezimalsystem, sondern im Binärsystem (auch Dualsystem genannt) dar

(Hesse 2020: S. 35). Ein Stellenwertsystem definiert dabei die Anzahl und Art der verwendeten

Ziffern. Das Dezimalsystem kennt die zehn Ziffern 0 – 9, das Binärsystem nur die beiden Ziffern

0 und 1 (Goll/Dausmann 2014: S. 701).

Die Anzahl der Ziffern eines Stellenwertsystems wird als Basis 𝑏 ∈ ℕ bezeichnet. Der Ziffernvorrat

(Menge aller möglichen Ziffern) wird 𝑉 genannt. Für das Binärsystem gilt 𝑏 = 2 und 𝑉 = {0; 1}.

4.1 Natürliche Zahlen

Jede Zahl besteht aus einer oder mehreren Stellen. In Computersystemen werden diese Bits

genannt. Für die Anzahl dieser Stellen gilt: 𝑚 ∈ ℕ. Eine Stelle enthält dabei genau eine Ziffer aus

dem Ziffernvorrat 𝑉. Die Stellen einer Zahl unterscheiden sich dabei in ihrer Wertigkeit 𝑠𝑛. Für die

Stelle 𝑛 ∈ ℕ0 gilt (Goll/Dausmann 2014: S. 142):

 𝑠𝑛 = 2𝑛 (4-1)

Um den Wert 𝑤𝑛 einer konkreten Stelle in einer Zahl zu berechnen wird der Wert der Ziffer 𝑎𝑛 mit

der Wertigkeit der Stelle 𝑠𝑛 multipliziert (Goll/Dausmann 2014: S. 142).

 𝑤𝑛 = 𝑎𝑛 ⋅ 𝑠𝑛 = 𝑎𝑛 ⋅ 2𝑛 (4-2)

Schlussendlich ergibt sich der Wert 𝑧 einer natürlichen Zahl aus der Addition der Werte aller ihrer

Stellen (Goll/Dausmann 2014: S. 142).

 𝑧 = ∑ 𝑤𝑖

𝑚−1

𝑖=0

= ∑ 𝑎𝑖 ⋅ 2𝑖

𝑚−1

𝑖=0

 (4-3)

Paul Schulz 2023 7

4.2 Fließkommazahlen

Der FISR-Algorithmus setzt die Darstellung von rationalen Zahlen als Fließkommazahlen nach

dem Standard IEEE 754 voraus (Lomont 2003: S. 2). Deshalb wird im Folgenden der Aufbau

einer solchen Zahl beschrieben.

4.2.1 Abgrenzung zu Festkommazahlen

Zur Darstellung rationaler Zahlen in Computersystemen existieren verschiedene Konzepte. Die

wichtigsten und bekanntesten Konzepte sind die der Fließkommazahlen (auch

Gleitkommazahlen) und der Festkommazahlen. Beide Konzepte speichern dabei den Anteil der

Zahl vor dem Komma getrennt von dem Anteil nach dem Komma.

Alle Festkommazahlen desselben Typs haben eine fest definierte Anzahl an Vor- und

Nachkommastellen. Das Komma befindet sich an einer festen Stelle (Böhme 2013: S. 13).

Fließkommazahlen dagegen speichern zusätzlich, an welcher Stelle sich das Komma befindet.

Mathematisch führt das zur sogenannten Exponentialschreibweise (auch wissenschaftliche

Schreibweise) (Böhme 2013: S. 16). Beispielsweise wird der Betrag der Lichtgeschwindigkeit 𝑐

in Dezimalschreibweise in der Physik oft als Gleitkommazahl angegeben.

 𝑐 = 2,99792458 ⋅ 108
𝑚

𝑠
 (4-4)

2,99792458 ist hierbei die Mantisse, 10 die Basis des Stellenwertsystems und 8 der Exponent.

Außerdem liegt hier die Mantisse in ihrer normalisierten Form vor. Eine Mantisse 𝑚 ∈ ℚ0
+ ist in

einem Stellenwertsystem mit der Basis 𝑏 normalisiert, wenn gilt (Wikipedia (Hg.) 2022a):

 1 ≤ 𝑚 < 𝑏 (4-5)

4.2.2 Binäre Fließkommazahlen

Eine ähnliche Darstellung lässt sich auch für das Binärsystem umsetzen. Eine Fließkommazahl

besteht dabei aus einer Mantisse 𝑚 ∈ ℚ0
+ und einem Exponenten 𝑒 ∈ ℤ. Der Wert der rationalen

Zahl 𝑥 berechnet sich daher wie folgt (Moroz et al. 2016: S. 2):

 𝑥 = 𝑚 ⋅ 2𝑒 (4-6)

In Computersystemen steht zur Speicherung von Mantisse und Exponent jeweils nur eine

begrenzte Anzahl an Stellen (Bits) zur Verfügung. Ein Standard legt deshalb fest, welche Anzahl

an Bits jeder Teil hat und wie diese zu interpretieren sind. Abbildung 4-1 zeigt den Aufbau einer

32-Bit Fließkommazahl nach IEEE 754 (Goll/Dausmann 2014: S. 144).

Paul Schulz 2023 8

𝑆 𝐸 𝑀

1 8 23

𝑆 ∈ {0; 1}; 𝐸 ∈ {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 28}; 𝑀 ∈ {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 223}

Abbildung 4-1 zeigt den Aufbau einer 32-Bit Fließkommazahl nach IEEE 754.

Zeile 1 gibt den Namen des Bestandteils, Zeile 2 die Anzahl der Bits für diesen Bestandteil an. Jeder

Bestandteil ist dabei als natürliche binäre Zahl gespeichert.

𝑆: Sign-Bit (Vorzeichen-Bit)

𝐸: Exponent

𝑀: Mantisse

Das Sign-Bit gibt das Vorzeichen der Fließkommazahl an. Der FISR-Algorithmus operiert

ausschließlich auf positiven Zahlen (Moroz et al. 2016: S. 3). Im Folgenden wird daher stets

𝑆 = 0 angenommen und das Sign-Bit deshalb nicht in die Berechnungen mit einbezogen.

Der Standard IEEE 754 kennt zwar auch nicht normalisierte Mantissen, der FISR-Algorithmus

setzt jedoch eine normalisierte Mantisse voraus (Aryeh 2020: TC. 00:09:07 – 00:09:40). Auf die

Beschreibung der denormalisierten Gleitkommazahlen wird deshalb verzichtet. Für eine

normalisierte Mantisse 𝑚 gilt nach (4-5) im Binärsystem:

 1 ≤ 𝑚 < 2 (4-7)

Die erste Stelle der Mantisse im Binärsystem ist damit immer 1. Daher muss diese nicht

mitgespeichert werden (Goll/Dausmann 2014: S. 146). 𝑚 berechnet sich daher aus 𝑀 wie folgt:

 𝑚 = 1 +
𝑀

223 (4-8)

Um auch negative Exponenten 𝑒 und damit sehr kleine Fließkommazahlen darstellen zu können,

wird der Exponent 𝐸 um ein sog. Bias verkleinert (Goll/Dausmann 2014: S. 145).

 𝑒 = 𝐸 − 127 (4-9)

Für den Wert einer positiven normalisierten 32-Bit Fließkommazahl 𝑥 nach IEEE 754 gilt somit

insgesamt:

 𝑥 = (1 +
𝑀

223) ⋅ 2𝐸−127 (4-10)

Paul Schulz 2023 9

Das Bitmuster einer Fließkommazahl nach Abbildung 4-1 kann auch als natürliche Zahl 𝑧 mit 32

binären Stellen interpretiert werden (Moroz et al. 2016: S. 3). Diese Uminterpretation erscheint

zwar auf den ersten Blick nicht sinnvoll, jedoch macht sich der FISR-Algorithmus genau diese zu

Nutze.

 𝑧 = 𝐸 ⋅ 223 + 𝑀 (4-11)

Das erläuterte Konzept lässt sich genauso auf 64-Bit Gleitkommazahlen übertragen, die ebenfalls

im Standard IEEE 754 beschrieben werden (Lomont 2003: S. 2). Die Konstanten für die

Berechnung können dem Standard entnommen werden. Aus Gründen der Übersichtlichkeit wird

jedoch in allen folgenden Darlegungen auf 64-Bit Gleitkommazahlen verzichtet.

4.2.3 Menge der Fließkommazahlen

Die Menge der Fließkommazahlen stellt eine Teilmenge der rationalen Zahlen dar. Im Folgenden

wird daher die Menge 𝐹 aller positiven normalisierten 32-Bit Fließkommazahlen nach IEEE 754

definiert, auf die in den folgenden Kapiteln immer wieder Bezug genommen wird. Der Exponent

𝐸 darf dabei weder seinen minimalen Wert 0 noch seinen maximalen Wert 28 − 1 annehmen, da

es sich in diesen Fällen nicht um eine normalisierte Zahl handelt (Goll/Dausmann 2014: S. 145).

𝐹 = {(1 +
𝑀

223) ⋅ 2𝐸−127|𝑀 ∈ 𝐴; 𝐸 ∈ 𝐵}

𝐴 = {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 223}

𝐵 = {𝑥|𝑥 ∈ ℕ ∧ 𝑥 < 28 − 1}

(4-12)

5 Approximation der binären Logarithmus-Funktion

Der Geschwindigkeitsvorteil des FISR-Algorithmus liegt insbesondere in der Genauigkeit der

ersten Näherung an den Funktionswert 𝑓(𝑥) aus (2-1) (Moroz et al. 2016: S. 1f.). Dabei wird eine

Linearisierung einer binären Logarithmusfunktion verwendet.

5.1 Linearisierung

Gegeben seien das Intervall 𝐼, die Funktion 𝑔 und die Funktionenscharen ℎµ und 𝑑µ mit µ ∈ ℝ

(Aryeh 2020: TC. 00:10:50 – 00:11:10).

Paul Schulz 2023 10

 𝐼 = [0; 1] (5-1)

 𝑔(𝑥) = log2(𝑥 + 1) (5-2)

 ℎµ(𝑥) = 𝑥 + µ (5-3)

 𝑑µ(𝑥) = 𝑔(𝑥) − ℎµ(𝑥) = log2(𝑥 + 1) − 𝑥 − µ =
ln(𝑥 + 1)

ln(2)
− 𝑥 − µ (5-4)

 𝐷𝑔 = 𝐷ℎµ
= 𝐷𝑑µ

= 𝐼 (5-5)

Satz 5-1: Für µ ∈ [0; 2µ0] gilt die folgende Approximation:

𝑔(𝑥) ≈ ℎµ(𝑥), ∀ 𝑥 ∈ 𝐼 ⇔ 𝑑µ(𝑥) ≈ 0, ∀ 𝑥 ∈ 𝐼

Für

µ = µ0 =
1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)

ist die maximale Abweichung von 𝑑µ(𝑥) zu 0 minimal.

Abbildung 5-1 zeigt die Graphen 𝐺𝑔 , 𝐺ℎ0
 und 𝐺𝑑0

 der Funktionen 𝑔, ℎ0 und 𝑑0 für µ = 0.

𝐺𝑑0
 hat Nullstellen für 𝑥 = 0 ∨ 𝑥 = 1. Dazwischen erreicht der Graph seinen absoluten Hochpunkt.

Für µ > 0 wird der Graph der Funktion ℎ0 nach oben, und damit der Graph der Funktion 𝑑0 nach unten

verschoben.

Paul Schulz 2023 11

Beweis:

Es gilt zunächst µ = 0. Das geübte Auge erkennt schnell, dass die Ränder der Definitionsmenge

von 𝑑0 die beiden Nullstellen der Funktion sind (Aryeh 2020: TC. 00:11:00 – 00:11:05).

𝑑0(𝑥) = 0 ⇔ log2(𝑥 + 1) − 𝑥 = 0 ⇔ 𝑥 = 0 ∨ 𝑥 = 1

𝑥𝑚𝑖𝑛,1 = 0; 𝑥𝑚𝑖𝑛,2 = 1

(5-6)

Die beiden Nullstellen sind die absoluten Tiefpunkte des Graphen von 𝐺𝑑0
. Zwischen den beiden

Nullstellen erreicht die Funktion für 𝑥𝑚𝑎𝑥 ∈ 𝐼 ihren Maximalwert. Die Extremstellen können

allgemein durch das Monotonieverhalten der Funktion 𝑑µ nachgewiesen werden.

𝑑µ

′ (𝑥) =

1
𝑥 + 1
ln(2)

− 1 =
1

ln(2) ⋅ (𝑥 + 1)
− 1

𝐷𝑑µ
′ =]0; 1[

(5-7)

𝑑µ
′ (𝑥𝑚𝑎𝑥) = 0 ⇔

1

ln(2) ⋅ (𝑥𝑚𝑎𝑥 + 1)
− 1 = 0 ⇔ ln(2) ⋅ (𝑥𝑚𝑎𝑥 + 1) = 1

⇔ ln(2) ⋅ 𝑥𝑚𝑎𝑥 + ln(2) = 1

⇔ 𝑥𝑚𝑎𝑥 =
1

ln(2)
− 1

(5-8)

Da es sich bei der gefundenen Nullstelle 𝑥𝑚𝑎𝑥 der Ableitung um eine einfache Nullstelle handelt,

wechselt die Funktion 𝑑µ
′ an der Nullstelle ihr Vorzeichen. Für das Monotonieverhalten gilt daher:

𝑑µ 𝑖𝑠𝑡 𝑠. 𝑚. 𝑧𝑢𝑛𝑒ℎ𝑚𝑒𝑛𝑑 𝑖𝑛]0; 𝑥𝑚𝑎𝑥]

𝑑µ 𝑖𝑠𝑡 𝑠. 𝑚. 𝑎𝑏𝑛𝑒ℎ𝑚𝑒𝑛𝑑 𝑖𝑛 [𝑥𝑚𝑎𝑥; 1[

(5-9)

Für µ > 0 wird der Graph der Funktion 𝑑0 lediglich nach unten verschoben. Damit die maximale

Abweichung von 𝑑µ(𝑥) zu 0 minimal wird, muss daher folgende Bedingung erfüllt sein:

−𝑑µ(𝑥𝑚𝑖𝑛,1) = 𝑑µ(𝑥𝑚𝑎𝑥)

⇔ − (
ln(0 + 1)

ln(2)
− 0 − µ) =

ln (
1

ln(2)
− 1 + 1)

ln(2)
−

1

ln(2)
+ 1 − µ

⇔ µ =
ln(1) − ln(ln(2)) − 1

ln(2)
+ 1 − µ

(5-10)

Paul Schulz 2023 12

⇔ 2µ = 1 −
1 + ln(ln(2))

ln(2)

⇒ µ = µ0 =
1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
≈ 0,043

Als minimierte maximale Abweichung 𝑑̂ der Funktion 𝑑µ0
 zu 0 ergibt sich somit:

𝑑̂ = |𝑑µ0
(0)|=| log2(0 + 1) − 0 − [

1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
] | =

1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)

= µ0 ≈ 0,043

(5-11)

Diese maximale Abweichung ist hinreichend genau für die Approximation aus Satz 5-1.

∎

5.2 Der binäre Logarithmus einer Fließkommazahl

Mithilfe der gefundenen Approximation aus Satz 5-1 lässt sich der binäre Logarithmus einer

Fließkommazahl annähernd berechnen (Willberger 2019).

Satz 5-2: Sei 𝑥 ∈ 𝐹 eine Fließkommazahl nach (4-12) und 𝑧 die Interpretation von 𝑥 als natürliche

Zahl nach (4-11), so gilt nach Anwendung von Satz 5-1 die folgende Approximation:

log2(𝑥) ≈
1

223 ⋅ 𝑧 + µ − 127

Beweis:

Zunächst wird die Zahl 𝑥 in die Funktion des binären Logarithmus eingesetzt und der entstehende

Term vereinfacht. Dabei wird der Term zur Berechnung einer Fließkommazahl aus (4-10)

verwendet (Aryeh 2020: TC. 00:10:30 – 00:10:40).

 log2(𝑥) = log2 [(1 +
𝑀

223
) ⋅ 2𝐸−127] = log2 (1 +

𝑀

223
) + 𝐸 − 127 (5-12)

Der übriggebliebene Logarithmus-Term entspricht der Funktion 𝑔 aus (5-2). Auch die

Definitionsmenge der Funktion 𝑔 wird eingehalten, da nach (4-7) und (4-8) stets gilt:

 0 ≤
𝑀

223 < 1 (5-13)

Daher lässt sich nun auch die Approximation aus Satz 5-1 für den Logarithmus-Term einsetzen

(Willberger 2019).

Paul Schulz 2023 13

log2(𝑥) ≈
𝑀

223 + µ + 𝐸 − 127

⇔ log2(𝑥) ≈
1

223 ⋅ (𝐸 ⋅ 223 + 𝑀) + µ − 127

(5-14)

Der ausgeklammerte Term entspricht der natürlichen Zahl 𝑧. Der Logarithmus von 𝑥 lässt sich

daher direkt mit 𝑧 approximieren.

 log2(𝑥) ≈
1

223 ⋅ 𝑧 + µ − 127 (5-15)

∎

6 Das Newton-Verfahren

Das Newton-Verfahren ist ein iterativer Algorithmus zur Bestimmung von Nullstellen stetig

differenzierbarer Funktionen. Ausgehend von einer Stelle 𝑥0, die sich in der Nähe einer Nullstelle

der Funktion befindet, wird in jedem Schritt (Iteration) des Algorithmus eine Annäherung 𝑥𝑛 an

die Nullstelle berechnet. Das Ergebnis des vorherigen Schritts wird dabei für den nächsten Schritt

verwendet. Die Nullstelle wird deshalb nicht exakt, sondern nur näherungsweise bestimmt

(Approximation) (Hesse 2020: S. 53f.).

6.1 Grafische Herleitung

Sei 𝑓: ℝ ⟼ ℝ eine stetig differenzierbare Funktion mit ihrem Graphen 𝐺𝑓 und sei 𝑧 ∈ ℝ eine

Nullstelle der Funktion 𝑓.

Das Newton-Verfahren nähert sich einer Nullstelle durch Linearisierung der Funktion 𝑓 an der

Stelle 𝑥0 an. Linearisierung bedeutet, dass die Funktion 𝑓 durch eine lineare Funktion 𝑔 um die

Stelle 𝑥0 angenähert wird. Die Linearisierung entspricht der Tangente an den Graphen 𝐺𝑓 an der

Stelle 𝑥0. Für die linearisierte Funktion gilt daher (Hesse 2020: S. 53):

𝑔(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0)

𝐷𝑔 = ℝ

(6-1)

Aufgrund der Annäherung des Graphen 𝐺𝑔 der Funktion 𝑔 an den Graphen 𝐺𝑓, liegt auch die

Nullstelle von 𝐺𝑔 in der Nähe von 𝑧. Durch Berechnung der Nullstelle 𝑥1 von 𝑔 wird damit eine

Annäherung an die Nullstelle von 𝑓 berechnet (Hesse 2020: S. 53).

Paul Schulz 2023 14

 𝑔(𝑥1) = 0 ⟺ 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥1 − 𝑥0) = 0 ⟺ 𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 (6-2)

Wurde 𝑥0 richtig gewählt, liegt 𝑥1 nun näher an 𝑧. Der vorherige Schritt kann nun mit 𝑥1 als

Ausgangswert wiederholt werden, wodurch eine höhere Genauigkeit des berechneten Wertes

erreicht wird. Der Wert der vorherigen Iteration wird jeweils für die nächste Iteration verwendet.

Allgemein gilt damit für die jeweils nächste Iteration (Hesse 2020: S. 54):

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
; 𝑛 ∈ ℕ0 (6-3)

Im günstigsten Fall konvergiert das Verfahren so gegen 𝑧, was bedeutet, dass sich die Werte von

𝑥𝑛 asymptotisch der Nullstelle annähern. Allerdings gibt es auch Fälle, in denen das Verfahren

gegen eine andere Nullstelle von 𝑓 konvergiert oder zwischen zwei Nullstellen pendelt

(Oszillation) (Wikipedia (Hg.) 2022b). Für den FISR-Algorithmus sind diese Fälle allerdings nicht

von Bedeutung, weswegen keine weiteren Erläuterungen dazu erfolgen.

6.2 Berechnung von Termen

Mithilfe des Newton-Verfahrens können Terme berechnet werden, die sich als Nullstelle einer

stetig differenzierbaren Funktion darstellen lassen. Für den FISR-Algorithmus von Bedeutung

sind die Nullstellen der folgenden Funktionenschar (Aryeh 2020: TC. 00:19:10 – 00:19:20):

𝑝𝑎(𝑥) =
1

𝑥2 − 𝑎

𝐷𝑝𝑎
= ℝ ∖ {0}; 𝑎 ∈ ℝ+

(6-4)

Die Nullstellen der Funktionenschar in Abhängigkeit des Parameters 𝑎 lassen sich leicht

darstellen.

 𝑝𝑎(𝑥) = 0 ⟺
1

𝑥2 − 𝑎 = 0 ⟺ 𝑥 = ±
1

√𝑎
 (6-5)

Ist bereits eine Näherung für den Term
1

√𝑎
 bekannt, lässt sich mit wenigen Iterationen des Newton-

Verfahrens ein wesentlich genauerer Wert berechnen.

Paul Schulz 2023 15

7 Der Algorithmus

Dieses Kapitel hat zum Zweck, den FISR-Algorithmus auf Grundlage der Erkenntnisse aus den

vorangegangenen Kapiteln herzuleiten, zu erklären und zu beweisen. Gegeben sei dafür

zunächst die Funktion 𝑓 aus (2-1) mit der Definitionsmenge 𝐷𝑓 = 𝐹 aus (4-12). Ziel des

Algorithmus ist die Berechnung einer möglichst genauen Approximation 𝑦 ∈ 𝐹 an 𝑓(𝑥) für ein

gegebenes 𝑥 der Definitionsmenge.

Der Ablauf des Algorithmus kann in zwei Teilbereiche aufgeteilt werden (Lomont 2003: S. 3):

1. Berechnen einer ersten Annäherung 𝑦0 ∈ 𝐹 an 𝑓(𝑥)

2. Berechnen weiterer Annäherungen an 𝑓(𝑥) durch Iterationen des Newton-Verfahrens.

Dabei dient 𝑦0 als Startwert für die erste Iteration.

7.1 Berechnen der ersten Annäherung

Es werden folgende Festlegungen getroffen: 𝑥 ∈ 𝐹 und 𝑦0 ∈ 𝐹 sind Fließkommazahlen nach

(4-12). Ihre Mantissen und Exponenten heißen 𝑀𝑥 und 𝐸𝑥 bzw. 𝑀𝑦0 und 𝐸𝑦0. Die Zahlen 𝑧𝑥 und

𝑧𝑦0 sind die Interpretationen von 𝑥 und 𝑦0 als natürliche Zahlen nach (4-11).

Satz 7-1: Ist die Approximation aus Satz 5-2 anwendbar, so gilt:

𝑧𝑦0 = 𝑐 −
1

2
⋅ 𝑧𝑥

⇔ 𝐸𝑦0 ⋅ 223 + 𝑀𝑦0 = 𝑐 −
1

2
⋅ (𝐸𝑥 ⋅ 223 + 𝑀𝑥)

𝑐 = 3 ⋅ 222 ⋅ (127 − µ)

Für die Interpretation des Bitmusters von 𝑧𝑦0 als Fließkommazahl 𝑦0 gilt:

𝑦0 ≈ 𝑓(𝑥)

Beweis:

Es wird zunächst von der zu beweisenden Gleichung ausgegangen.

 𝑦0 ≈ 𝑓(𝑥) ⇔ 𝑦0 ≈
1

√𝑥
⇔ 𝑦0 ≈ 𝑥−

1
2 (7-1)

Anschließend wird der binäre Logarithmus auf beide Seiten angewandt und die Gleichung

vereinfacht (Aryeh 2020: TC. 00:15:50 – 00:16:10).

Paul Schulz 2023 16

 log2(𝑦0) ≈ log2 (𝑥−
1
2) ⇔ log2(𝑦0) ≈ −

1

2
⋅ log2(𝑥) (7-2)

Da auf beiden Seiten der Gleichung der binäre Logarithmus einer Fließkommazahl stehen bleibt,

kann die Approximation aus Satz 5-2 eingesetzt werden (Willberger 2019). Die entstehende

Gleichung dient zur Berechnung von 𝑧𝑦0. Daher wird nun das Gleichheitszeichen verwendet.

1

223 ⋅ 𝑧𝑦0 + µ − 127 = −
1

2
⋅ (

1

223 ⋅ 𝑧𝑥 + µ − 127) (7-3)

Die Gleichung kann nun nach 𝑧𝑦0 umgestellt werden (Willberger 2019).

1

223 ⋅ 𝑧𝑦0 = −
1

2
⋅ (

1

223 ⋅ 𝑧𝑥 + µ − 127) − µ + 127

⇔ 𝑧𝑦0 = −222 ⋅ (
1

223 ⋅ 𝑧𝑥 + µ − 127) − µ ⋅ 223 + 127 ⋅ 223

⇔ 𝑧𝑦0 = −
1

2
⋅ 𝑧𝑥 − µ ⋅ 222 + 127 ⋅ 222 − µ ⋅ 223 + 127 ⋅ 223

(7-4)

Die konstanten Terme auf der rechten Seite der Gleichung können als Konstante 𝑐 ausgelagert

werden (Aryeh 2020: TC. 00:17:00 – 00:17:20).

𝑧𝑦0 = 𝑐 −
1

2
⋅ 𝑧𝑥

𝑐 = −µ ⋅ 222 + 127 ⋅ 222 − µ ⋅ 223 + 127 ⋅ 223

= 127 ⋅ (222 + 223) − µ ⋅ (222 + 223) = (222 + 223) ⋅ (127 − µ)

= 222 ⋅ (1 + 2) ⋅ (127 − µ) = 3 ⋅ 222 ⋅ (127 − µ)

(7-5)

∎

Für die Berechnung von 𝑦0 mithilfe des gezeigten Verfahrens ist es wichtig zu verstehen, dass

durch die Gleichung aus Satz 7-1 nicht 𝑦0 direkt, sondern lediglich die natürliche Zahl 𝑧𝑦0

berechnet wird.

Um im Dezimalsystem die Komponenten von 𝑦0 (𝐸𝑦0 und 𝑀𝑦0) zu erhalten, müsste die Gleichung

zuerst nach diesen umgestellt und diese einzeln berechnet werden. Der Standard IEEE 754 stellt

jedoch für das Binärsystem sicher, dass die Bitfolge von 𝑧𝑦0 genau der Bitfolge von 𝑦0 entspricht.

Dies wurde bereits in (4-11) gezeigt. Für Computersysteme entsteht so kein zusätzlicher

Rechenaufwand, da die ohnehin berechnete natürliche Zahl 𝑧𝑦0 einfach als Fließkommazahl

interpretiert werden kann.

Paul Schulz 2023 17

7.2 Anwendung des Newton-Verfahrens

Wie bereits in Kapitel 6.2 gezeigt, lassen sich die Werte der Funktion 𝑓 als Nullstellen der

Funktionenschar 𝑝𝑎 aus (6-4) darstellen. Da die Variable 𝑥 bereits als Argument für den

Algorithmus als Ganzes verwendet wird, wird die Funktion 𝑝𝑥 wie folgt definiert

(Aryeh 2020: TC. 00:19:10 – 00:19:20):

𝑝𝑥(𝑦) =
1

𝑦2 − 𝑥

𝐷𝑝𝑥
= ℝ ∖ {0}; 𝑥 ∈ 𝐹

(7-6)

Für die Ableitung von 𝑝𝑥 gilt damit:

𝑝𝑥
′ (𝑦) = −

2𝑦

𝑦4 = −
2

𝑦3

𝐷𝑝𝑥
′ = ℝ ∖ {0}

(7-7)

Für eine Newton-Iteration gilt nach (6-3):

𝑦𝑛+1 = 𝑦𝑛 −
𝑝𝑥(𝑦𝑛)

𝑝𝑥
′ (𝑦𝑛)

; 𝑛 ∈ ℕ0

⇔ 𝑦𝑛+1 = 𝑦𝑛 −

1
𝑦𝑛

2 − 𝑥

−
2

𝑦𝑛
3

= 𝑦𝑛 +

(
1

𝑦𝑛
2 − 𝑥) ⋅ 𝑦𝑛

3

2
= 𝑦𝑛 +

𝑦𝑛 − 𝑥 ⋅ 𝑦𝑛
3

2
=

3

2
𝑦𝑛 −

𝑥 ⋅ 𝑦𝑛
3

2

=
1

2
𝑦𝑛 ⋅ (3 − 𝑥 ⋅ 𝑦𝑛

2)

(7-8)

Als Startwert für die erste Iteration wird die Approximation 𝑦0 aus Kapitel 7.1 verwendet. Danach

können weitere Iterationen durchgeführt werden, um ein genaueres Ergebnis zu erhalten.

8 Effizienz der Berechnungen

Wie bereits in Kapitel 3.3 beschrieben, soll der FISR-Algorithmus einen Geschwindigkeitsvorteil

gegenüber der herkömmlichen Berechnung bieten. Dieser Vorteil des Algorithmus kommt

allerdings auf Kosten der Genauigkeit zustande (McEniry 2007: S. 1). Im folgenden Kapitel wird

daher die Effizienz des Algorithmus diskutiert.

Paul Schulz 2023 18

8.1 Geschwindigkeit

Zur Zeit der Entwicklung des Algorithmus war er ca. vier Mal so schnell wie eine

Standardimplementierung der Berechnung in vielen Programmiersprachen (Lomont 2003: S. 1).

Die hohe Performance des Verfahrens kommt vor allem dadurch zustande, dass ein

Computersystem für die Berechnung keinerlei Division durchführen muss

(Aryeh 2020: TC. 00:02:40 – 00:03:00).

Dass Divisionen langsamer sind als Multiplikationen, liegt vor allem daran, dass Divisionen nur

schwer parallelisiert werden können. Für die Multiplikation gelten sowohl das Assoziativ- als auch

das Kommutativgesetz. Diese Gesetze gelten nicht für die Division. So kann die Multiplikation

zweier Zahlen in viele kleinere Multiplikationen und Additionen zerlegt werden, die parallel

berechnet werden können. Bei der Division ist das nicht ohne weiteres möglich (Noe 2019).

In der Formel für eine Newton-Iteration aus (7-8) kommt zwar mit 1 2⁄ ein Bruch vor. Da es sich

allerdings um einen konstanten Faktor handelt, kann dieser problemlos durch eine Multiplikation

mit 0,5 ersetzt werden.

Der Bruch 1 2⁄ kommt auch in der Formel zur Berechnung von 𝑧𝑦0 aus Satz 7-1 vor. Dabei geht

es allerdings um die Berechnung einer natürlichen Zahl, so dass sich hier anders beholfen

werden kann. Wird bei einer Dezimalzahl das Komma um eine Stelle verschoben, kommt dies

einer Multiplikation mit bzw. Division durch 10 gleich. Im Binärsystem führt eine Verschiebung

des Kommas zu einer Multiplikation mit bzw. Division durch 2. Mit sogenannten Bitshifts kann

somit sehr einfach durch 2 geteilt werden (McEniry 2007: S. 3).

8.2 Genauigkeit

Die Genauigkeit des Verfahrens hängt stark von der Konstante µ aus Satz 5-1 und damit auch

von der Konstante 𝑐 aus Satz 7-1 ab. Obwohl die Konstante aus (5-10) die beste Annäherung an

die Logarithmus-Funktion darstellt, ist sie nicht die beste Konstante für den Algorithmus. Das hat

den Grund, dass die Annäherung nachfolgende Schritte (z.B. die Newton-Iterationen) nicht

berücksichtigt (Wikipedia (Hg.) 2023).

Im Laufe der Zeit wurden deshalb andere Konstanten 𝑐 von diversen Mathematikern

vorgeschlagen. Aufgrund der Größe der Zahlen, werden diese Konstanten üblicherweise im

Hexadezimal-Format (Stellenwertsystem mit Basis 16) angegeben. Die folgende Tabelle zeigt

mögliche Konstanten und den dadurch entstehenden Fehler. Die Fehlerwerte wurden im Rahmen

dieser Seminararbeit selbst ermittelt. Die Konstanten stammen allerdings aus anderen

mathematischen Arbeiten. Ihr Ursprung ist in der letzten Spalte angegeben.

Paul Schulz 2023 19

𝑐 µ

𝑦0 𝑦1

Quelle Maximaler

Fehler (%)

Durchschn.

Fehler (%)

Maximaler

Fehler (%)

Durchschn.

Fehler (%)

5𝐹3759𝐷𝐹16 0,0450466 3,438 2,327 0,175 0,095
(id Software

(Hg.) 2012)

5𝐹37𝐵𝐶𝐵616 0,0430357 3,638 2,444 0,201 0,105
µ0 aus Satz

5-1

5𝐹375𝐴8616 0,0450333 3,437 2,328 0,175 0,095
(Moroz et al.

2016: S. 10)

Abbildung 8-1 zeigt verschiedene Konstanten 𝑐 und den dadurch entstehenden Fehler über alle positiven

normalisierten 32-Bit Fließkommazahlen nach IEEE 754. Die Werte sind gerundet.

𝑦0 ist die Annäherung nach Satz 7-1.

𝑦1 ist die Verbesserung durch eine Newton-Iteration.

Man erkennt, dass bereits nach der ersten Newton-Iteration der maximale relative Fehler bei ca.

0,2 % liegt. Für viele Anwendungen in der Computer-Grafik ist das schon ausreichend genau

(Willberger 2019).

8.3 Heutige Relevanz

Obwohl der Geschwindigkeitsvorteil zur Zeit der Entwicklung des FISR-Algorithmus groß war,

spielt der Algorithmus heute eine eher untergeordnete Rolle. Dies liegt vor allem daran, dass viele

Hardware-Hersteller Algorithmen für die Berechnung der reziproken Quadratwurzel in ihre

Produkte integriert haben. Die Berechnungen werden dabei von der Hardware selbst unterstützt

(McEniry 2007: S. 1). Bei dem FISR-Algorithmus handelt es sich um eine reine Software-

Implementierung.

Mit dem Assembler-Befehl rsqrtss steht ein solcher Algorithmus heute auf den weit verbreiteten

x86-Prozessoren zur Verfügung. Auch dieser Befehl berechnet lediglich eine Approximation an

den Wert der reziproken Quadratwurzel. Jedoch schlägt dieser den FISR-Algorithmus in Sachen

Geschwindigkeit und Genauigkeit (Elan 2009). Auch für viele ARM-Prozessoren, die vor allem in

kleineren Systemen Verwendung finden, steht heute ein ähnlicher Assembler-Befehl zur

Verfügung (Arm Limited (Hg.) 2021).

Für Systeme jedoch, die über keine zusätzliche Hardware-Beschleunigung verfügen, kann der

Einsatz des Algorithmus auch heute noch sinnvoll sein.

Paul Schulz 2023 20

9 Schlussbemerkung

Diese Seminararbeit kratzt lediglich an der Oberfläche der mathematischen

Forschungsmöglichkeiten, die der FISR-Algorithmus bietet. Das Verfahren verfügt über weiteres

Optimierungspotential. So wurde beispielsweise ein angepasstes Newton-Verfahren eigens für

diesen Algorithmus entwickelt. Auch mit der Herleitung verschiedener Konstanten 𝑐 haben

diverse Autoren mathematische Werke gefüllt.

Wenngleich das Verfahren heutzutage in der Computergrafik eine kleinere Rolle spielt, so bleibt

es doch ein mathematisch faszinierender Algorithmus. Besonders für Informatikerinnen und

Informatiker bietet der Algorithmus die Gelegenheit, über den eigenen Tellerrand

hinauszuschauen und in der Mathematik – neben bewährten Konzepten – neue, bessere

Lösungen für alte Probleme zu finden.

An dieser Stelle sei noch einmal an die Demo-Website unter https://fisr.schulz-paul.de erinnert.

Nach der Lektüre dieser Arbeit stellt sie eine gute Gelegenheit dar, die theoretisch gewonnenen

Erkenntnisse praktisch nachzuvollziehen.

https://fisr.schulz-paul.de/

Paul Schulz 2023 21

10 Abbildungsverzeichnis

Abbildung 1-1 zeigt den Quellcode einer Funktion aus dem Spiel Quake III Arena in leicht

abgewandelter Form. Der Ausschnitt ist in der Programmiersprache C geschrieben.

Quelle: https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552

 ... 1

Abbildung 3-1 zeigt den Einfall eines Lichtstrahls 𝑙 auf eine ebene Oberfläche mit dem

Flächeninhalt 𝐴. Der Lichtvektor zeigt dabei zur Lichtquelle hin. 𝑛 ist der Normalenvektor auf die

Oberfläche. Die Skizze dient als Grundlage der Berechnung.

Quelle: Selbst erstellt, inspiriert von (Nischwitz et al. 2019: S. 334) .. 4

Abbildung 4-1 zeigt den Aufbau einer 32-Bit Fließkommazahl nach IEEE 754. Zeile 1 gibt den

Namen des Bestandteils, Zeile 2 die Anzahl der Bits für diesen Bestandteil an. Jeder

Bestandteil ist dabei als natürliche binäre Zahl gespeichert. 𝑆: Sign-Bit (Vorzeichen-Bit) 𝐸:

Exponent 𝑀: Mantisse

Quelle: Selbst erstellt, inspiriert von (Goll/Dausmann 2014: S. 144) ... 8

Abbildung 5-1 zeigt die Graphen 𝐺𝑔, 𝐺ℎ0 und 𝐺𝑑0 der Funktionen 𝑔, ℎ0 und 𝑑0 für µ = 0. 𝐺𝑑0

hat Nullstellen für 𝑥 = 0 ∨ 𝑥 = 1. Dazwischen erreicht der Graph seinen absoluten Hochpunkt.

Für µ > 0 wird der Graph der Funktion ℎ0 nach oben, und damit der Graph der Funktion 𝑑0

nach unten verschoben.

Quelle: Selbst erstellt .. 10

Abbildung 8-1 zeigt verschiedene Konstanten 𝑐 und den dadurch entstehenden Fehler über alle

positiven normalisierten 32-Bit Fließkommazahlen nach IEEE 754. Die Werte sind gerundet. 𝑦0

ist die Annäherung nach Satz 7-1. 𝑦1 ist die Verbesserung durch eine Newton-Iteration.

Quelle: Selbst erstellt. Der Ursprung der Konstanten ist in der letzten Spalte zu finden. 19

Paul Schulz 2023 22

11 Literaturverzeichnis

Arm Limited (Hg.), 2021: FRSQRTE, https://developer.arm.com/documentation/ddi0596/2021-

12/SIMD-FP-Instructions/FRSQRTE--Floating-point-Reciprocal-Square-Root-Estimate-,

abgerufen am 15.01.2023

Aryeh, Nemean, 2020: Fast Inverse Square Root — A Quake III Algorithm,

https://www.youtube.com/watch?v=p8u_k2LIZyo, abgerufen am 15.01.2023

Böhme, Hans-Joachim, 2013: Grundlagen der Informatik I, https://www2.htw-

dresden.de/~boehme/Hans_Wings2013/GI_Ueb_WS2013.pdf, abgerufen am 15.01.2023

Elan, Ruskin, 2009: Timing square root,

https://web.archive.org/web/20210208132927/http://assemblyrequired.crashworks.org/timing-

square-root/, abgerufen am 15.01.2023

Goll, Joachim/Dausmann, Manfred, 2014: C als erste Programmiersprache, Mit den Konzepten

von C11, Wiesbaden

Heinisch, Cornelia/Müller-Hofmann, Frank/Goll, Joachim, 2010: Java als erste

Programmiersprache, Vom Einsteiger zum Profi, Wiesbaden

Hesse, Kerstin, 2020: Modellieren und Anwendungen: Numerische Analysis, https://math.uni-

paderborn.de/fileadmin/mathematik/Kerstin-

Hesse/Numerische_Analysis_Skript_aktualisiert_Nov-2020.pdf, abgerufen am 15.01.2023

id Software (Hg.), 2012: q_match.c, https://github.com/id-Software/Quake-III-

Arena/blob/master/code/game/q_math.c#L552, abgerufen am 15.01.2023

Lomont, Chris, 2003: Fast inverse square root, http://www.lomont.org/papers/2003/InvSqrt.pdf,

abgerufen am 25.09.2022

McEniry, Charles, 2007: The mathematics behind the fast inverese square root function code.,

https://web.archive.org/web/20150511044204/http://www.daxia.com/bibis/upload/406Fast_Inver

se_Square_Root.pdf, abgerufen am 14.01.2023

Moroz, Leonid/Walczyk, Cezary/Hrynchyshyn, Andriy et al., 2016: Fast calculation of inverse

square root with the use of magic constant – analytical approach,

https://arxiv.org/pdf/1603.04483.pdf, abgerufen am 22.09.2022

Nischwitz, Alfred/Fischer, Max/Haberäcker, Peter et al., 2019: Computergrafik, Band I des

Standardwerks Computergrafik und Bildverarbeitung [E-Book], Wiesbaden

https://developer.arm.com/documentation/ddi0596/2021-12/SIMD-FP-Instructions/FRSQRTE--Floating-point-Reciprocal-Square-Root-Estimate-
https://developer.arm.com/documentation/ddi0596/2021-12/SIMD-FP-Instructions/FRSQRTE--Floating-point-Reciprocal-Square-Root-Estimate-
https://www.youtube.com/watch?v=p8u_k2LIZyo
https://www2.htw-dresden.de/~boehme/Hans_Wings2013/GI_Ueb_WS2013.pdf
https://www2.htw-dresden.de/~boehme/Hans_Wings2013/GI_Ueb_WS2013.pdf
https://web.archive.org/web/20210208132927/http:/assemblyrequired.crashworks.org/timing-square-root/
https://web.archive.org/web/20210208132927/http:/assemblyrequired.crashworks.org/timing-square-root/
https://math.uni-paderborn.de/fileadmin/mathematik/Kerstin-Hesse/Numerische_Analysis_Skript_aktualisiert_Nov-2020.pdf
https://math.uni-paderborn.de/fileadmin/mathematik/Kerstin-Hesse/Numerische_Analysis_Skript_aktualisiert_Nov-2020.pdf
https://math.uni-paderborn.de/fileadmin/mathematik/Kerstin-Hesse/Numerische_Analysis_Skript_aktualisiert_Nov-2020.pdf
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552
http://www.lomont.org/papers/2003/InvSqrt.pdf
https://web.archive.org/web/20150511044204/http:/www.daxia.com/bibis/upload/406Fast_Inverse_Square_Root.pdf
https://web.archive.org/web/20150511044204/http:/www.daxia.com/bibis/upload/406Fast_Inverse_Square_Root.pdf
https://arxiv.org/pdf/1603.04483.pdf

Paul Schulz 2023 23

Noe, Marcel, 2019: Why does division of floating point numbers take a lot more time than

multiplication of floats in computers?, https://www.quora.com/Why-does-division-of-floating-

point-numbers-take-a-lot-more-time-than-multiplication-of-floats-in-computers, abgerufen am

15.01.2023

Wikipedia (Hg.), 2022a: Gleitkommazahl, https://de.wikipedia.org/wiki/Gleitkommazahl,

abgerufen am 15.01.2023

Wikipedia (Hg.), 2022b: Newtonverfahren, https://de.wikipedia.org/wiki/Newtonverfahren,

abgerufen am 15.01.2023

Wikipedia (Hg.), 2023: Fast inverse square root,

https://en.wikipedia.org/wiki/Fast_inverse_square_root, abgerufen am 15.01.2023

Willberger, Thomas, 2019: Wie funktioniert der Fast-Inverse Square Root Algorithmus?,

https://de.quora.com/Wie-funktioniert-der-Fast-Inverse-Square-Root-Algorithmus, abgerufen am

15.01.2023

https://www.quora.com/Why-does-division-of-floating-point-numbers-take-a-lot-more-time-than-multiplication-of-floats-in-computers
https://www.quora.com/Why-does-division-of-floating-point-numbers-take-a-lot-more-time-than-multiplication-of-floats-in-computers
https://de.wikipedia.org/wiki/Gleitkommazahl
https://de.wikipedia.org/wiki/Newtonverfahren
https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://de.quora.com/Wie-funktioniert-der-Fast-Inverse-Square-Root-Algorithmus

	1 Vorwort
	2 Hinführung zum Thema
	2.1 Aufbau der Arbeit

	3 Bezug zur 3D-Computergrafik
	3.1 Normalisierung von Vektoren
	3.2 Beispiel Lichtintensität
	3.3 Notwendigkeit des Algorithmus

	4 Darstellung von Zahlen in Computersystemen
	4.1 Natürliche Zahlen
	4.2 Fließkommazahlen
	4.2.1 Abgrenzung zu Festkommazahlen
	4.2.2 Binäre Fließkommazahlen
	4.2.3 Menge der Fließkommazahlen

	5 Approximation der binären Logarithmus-Funktion
	5.1 Linearisierung
	5.2 Der binäre Logarithmus einer Fließkommazahl

	6 Das Newton-Verfahren
	6.1 Grafische Herleitung
	6.2 Berechnung von Termen

	7 Der Algorithmus
	7.1 Berechnen der ersten Annäherung
	7.2 Anwendung des Newton-Verfahrens

	8 Effizienz der Berechnungen
	8.1 Geschwindigkeit
	8.2 Genauigkeit
	8.3 Heutige Relevanz

	9 Schlussbemerkung
	10 Abbildungsverzeichnis
	11 Literaturverzeichnis

