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1 Vorwort 

Im Jahr 2002 und 2003 begannen in verschiedenen Internet-Foren Diskussionen über ein 

bestimmtes Stück Programmcode. Es handelte sich um einen Ausschnitt aus dem Quelltext des 

1999 veröffentlichten Computerspiels Quake III Arena, einem Ego-Shooter-Spiel 

(McEniry 2007: S. 1). 

float Q_rsqrt( float number ) { 

 long i; 

 float x2, y; 

 const float threehalfs = 1.5F; 

 x2 = number * 0.5F; 

 y  = number; 

 i  = * ( long * ) &y;  // evil floating point bit level hacking 

 i  = 0x5f3759df - ( i >> 1 ); // what the fuck? 

 y  = * ( float * ) &i; 

 y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration 

 

 return y; 

} 

Abbildung 1-1 zeigt den Quellcode einer Funktion aus dem Spiel Quake III Arena in leicht abgewandelter 

Form. Der Ausschnitt ist in der Programmiersprache C geschrieben. 

Dem Namen der Funktion zufolge, berechnet der Code den Kehrwert der Wurzel einer positiven 

Zahl. Jedoch erscheinen die Berechnungen selbst für Entwickler mit großer Erfahrung in der 

Programmiersprache C nicht nachvollziehbar. Als besonders fragwürdig erscheint hierbei der 

Ursprung der hexadezimalen Konstante 5𝐹3759𝐷𝐹. Genauso ungewöhnlich ist die Interpretation 

einer Fließkommazahl als natürliche Zahl. Die Kommentare der Entwickler im Quellcode tragen 

ebenfalls wenig zum Verständnis bei. 

Was zunächst willkürlich erschien, entpuppte sich als ein genialer, schneller und gut durchdachter 

Algorithmus, welcher dem Computerspiel eine bessere Performance verleihen sollte. In den 

folgenden Jahren erlangte das Verfahren unter dem englischen Namen Fast-Inverse-Square-

Root-Algorithmus über das Internet große Popularität (McEniry 2007: S. 1). 

Als gelernter Fachinformatiker für Anwendungsentwicklung erfuhr ich erstmals von der Existenz 

dieses Algorithmus durch einen Arbeitskollegen. Jedoch fehlten mir zu diesem Zeitpunkt die 

mathematischen Kenntnisse zum Verständnis des Verfahrens. Während des Seminars erinnerte 

ich mich durch einen Hinweis von Herrn Baier an den Algorithmus. Damit stand das Thema 

meiner Arbeit fest. 

Diese Seminararbeit hat zum Ziel den Algorithmus mathematisch herzuleiten und verständlich zu 

erklären. Außerdem wird seine Bedeutung für die 3D-Computergrafik erläutert und damit ein Blick 

auf den Ursprung des Algorithmus geworfen. 
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2 Hinführung zum Thema 

Diese Seminararbeit behandelt den Fast-Inverse-Square-Root-Algorithmus. Diese Bezeichnung 

wird von jetzt an mit FISR-Algorithmus abgekürzt. Das Verfahren dient zur Berechnung der 

reziproken Quadratwurzel einer positiven rationalen Zahl. 

 𝑓(𝑥) =
1

√𝑥
; 𝐷𝑓 = ℚ+ (2-1) 

Der Algorithmus hat insbesondere eine schnelle und effiziente Berechnung zum Ziel, weswegen 

lediglich eine hinreichend genaue Annäherung (Approximation) an das tatsächliche Ergebnis 

berechnet wird (McEniry 2007: S. 1). Mit einem erhöhten Rechenaufwand wäre jedoch auch eine 

wesentlich genauere Berechnung möglich. 

Dem Wort Algorithmus wird folgende Definition zugrunde gelegt: 

„Algorithmen sind Vorschriften für die Lösung eines Problems, welche die Handlungen und ihre 

Abfolge […] beschreiben.“ (Heinisch et al. 2010: S. 4) 

Algorithmen stellen damit eine Schritt-für-Schritt-Anleitung zur Lösung eines (z.B. 

mathematischen) Problems dar. Beispiele für bekannte mathematische Algorithmen sind: Der 

Euklidische Algorithmus oder die Polynomdivision. Aber auch alltägliche Dinge, wie Kochrezepte 

oder Montage-Anleitungen können als Algorithmen verstanden werden 

(Heinisch et al. 2010: S. 4). 

Da die Herleitung und Erklärung des Algorithmus vor allem theoretischer Natur sind, wurde 

eigens für diese Seminararbeit eine Demo-Website programmiert. Auf dieser kann der 

Algorithmus praktisch ausprobiert und Schritt-für-Schritt nachvollzogen werden. Die Web-

Anwendung kann unter der folgenden URL aufgerufen werden: https://fisr.schulz-paul.de 

2.1 Aufbau der Arbeit 

Der FISR-Algorithmus wurde ursprünglich für die 3D-Computergrafik entworfen und eingesetzt. 

Kapitel 3 erläutert daher den konkreten Bezug zur Computergrafik und damit die Notwendigkeit 

eines solchen Algorithmus. 

Die Kapitel 4, 5 und 6 vermitteln wichtige mathematische Grundlagen, die zum weiteren 

Verständnis notwendig sind. 

Schließlich beschäftigen sich die Kapitel 7 und 8 ausführlich mit dem Algorithmus selbst. Er wird 

dabei mathematisch hergeleitet und bewiesen. Da es sich bei der Berechnung um eine 

Approximation handelt, wird außerdem auf die Geschwindigkeit und Genauigkeit eingegangen. 

https://fisr.schulz-paul.de/
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Alle wichtigen Abbildungen, Definitionen, Formeln und Sätze sind mit der Kapitelnummer und 

einer innerhalb des Kapitels fortlaufenden Nummer beschriftet. Im Verlauf der Ausführungen wird 

auf vorangegangene Aussagen mithilfe eben dieser Beschriftungen verwiesen. 

3 Bezug zur 3D-Computergrafik 

Die Aufgabe der Computergrafik ist es, aus einer abstrakten Objektbeschreibung ein Bild zu 

generieren. Die Objektbeschreibung umfasst dabei üblicherweise Informationen über Form, 

Position oder Farbgebung der abgebildeten Objekte. Aber auch die Position von Lichtquellen, 

Reflexionseigenschaften oder Transparenz von Objekten sind Teil dieser Beschreibung 

(Nischwitz et al. 2019: S. 6f.). 

In der 3D-Computergrafik werden dabei Objekte zunächst im 3-dimensionalen Raum positioniert. 

Da die Ausgabegeräte allerdings üblicherweise flach sind, muss das Bild noch in ein 2-

dimensionales Bild umgewandelt werden. Dabei kommen verschiedenen mathematische 

Verfahren und Konzepte zum Einsatz (Nischwitz et al. 2019: S. 205f.). 

Die Position von Objekten im Raum wird dabei üblicherweise durch Vektoren beschrieben. 

Insbesondere bei der Berechnung von Beleuchtung und Reflexionseffekten kommen dabei 

normalisierte Vektoren zum Einsatz. 

3.1 Normalisierung von Vektoren 

Unter Normalisierung eines Vektors versteht man die Skalierung seiner Länge auf 1 LE unter 

Beibehaltung seiner Richtung (Aryeh 2020: TC. 00:01:32 – 00:01:40). 

Gegeben sei der 3-dimensionale Vektor 𝑣 ≠ 0⃗⃗: 

 𝑣 = (

𝑣1

𝑣2

𝑣3

) ;  𝑣1, 𝑣2, 𝑣3 ∈ ℝ (3-1) 

Für den Betrag (die Länge) desselben Vektors gilt demnach: 

 |𝑣| = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 (3-2) 

Werden alle Vektorkoordinaten von 𝑣 mit einem Faktor 𝑥 ∈ ℝ0
+ multipliziert, so gilt für den Betrag 

des neuen Vektors: 

 |𝑥 ⋅ 𝑣| = √(𝑥 ⋅ 𝑣1)2 + (𝑥 ⋅ 𝑣2)2 + (𝑥 ⋅ 𝑣3)2 = √𝑥2 ⋅ (𝑣1
2 + 𝑣2

2 + 𝑣3
2) = 𝑥 ⋅ |𝑣| (3-3) 
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Somit gilt für den normalisierten Vektor 𝑣0⃗⃗⃗⃗⃗ mit |𝑣0⃗⃗⃗⃗⃗| = 1: 

 𝑣0⃗⃗⃗⃗⃗ =
1

|𝑣|
⋅ 𝑣 =

1

√𝑣1
2 + 𝑣2

2 + 𝑣3
2

⋅ 𝑣 (3-4) 

Der Skalierungsfaktor des Vektors 𝑣 entspricht dabei der Funktion 𝑓 aus (2-1). 

3.2 Beispiel Lichtintensität 

Die Beleuchtung ist in der 3D-Computergrafik dafür verantwortlich, dass Objekte auf dem 2-

dimensionalen Bildschirm für das menschliche Auge 3-dimensional erscheinen. Durch 

Reflexions- und Schattierungseffekte wird dem Beobachter die Tiefe des Bildes vorgetäuscht 

(Nischwitz et al. 2019: S. 317). 

In folgendem Beispiel soll die Verwendung normalisierter Vektoren bei der Beleuchtungs-

Rechnung demonstriert werden. Es wird die Berechnung der von einer Lichtquelle auf ein 

Oberflächenstück einfallende Lichtintensität beschrieben. Abbildung 3-1 zeigt den geometrischen 

Aufbau als Grundlage für die Berechnung. 

Abbildung 3-1 zeigt den Einfall eines Lichtstrahls 𝑙 auf eine ebene 

Oberfläche mit dem Flächeninhalt 𝐴. Der Lichtvektor zeigt dabei 

zur Lichtquelle hin. 𝑛⃗⃗ ist der Normalenvektor auf die Oberfläche. 

Die Skizze dient als Grundlage der Berechnung. 

 

Es gelten die folgenden Festlegungen: 

 

𝑛⃗⃗, 𝑙 ∈ ℝ3;  𝐴 ∈ ℝ+;  𝛼 ∈ [0°; 90°] 

Der Vektor 𝑛⃗⃗ steht senkrecht auf der Oberfläche. 

(3-5) 
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Gegeben seien die Vektoren 𝑛⃗⃗  und 𝑙 und der Flächeninhalt 𝐴, nicht aber der Winkel 𝛼. Für die 

Berechnung der Lichtintensität 𝐼 ∈ ℝ0
+ ist nur die Projektion des Oberflächenstücks auf eine zum 

Lichtvektor 𝑙 senkrechte Ebene relevant (Nischwitz et al. 2019: S. 333). Dabei besteht folgender 

Zusammenhang: 

 𝐼 ~ 𝐴⊥ (3-6) 

Der Abbildung 3-1 kann entnommen werden, dass sich die projizierte Fläche 𝐴⊥ wie folgt 

berechnen lässt: 

 𝐴⊥ = 𝐴 ⋅ cos(𝛼) (3-7) 

Bekanntlich kann der Winkel zwischen zwei Vektoren mithilfe des Skalarprodukts ermittelt 

werden. 

 𝑛⃗⃗ ∘ 𝑙 = |𝑎⃗| ⋅ |𝑙| ⋅ cos(𝛼) (3-8) 

Sind die beiden Vektoren normalisiert, und haben daher die Länge 1, gilt folgender 

Zusammenhang (Nischwitz et al. 2019: S. 333): 

 

𝑛⃗⃗ ∘ 𝑙 = cos(𝛼) 

⇒ 𝐴⊥ = 𝐴 ⋅ (𝑛⃗⃗ ∘ 𝑙) 

(3-9) 

Auf diese Weise lässt sich sehr einfach, allein mit Multiplikation, die Lichtintensität berechnen. 

3.3 Notwendigkeit des Algorithmus 

Das weite Feld der Computer-Grafik kann in die Echtzeit- bzw. Interaktive- und Nichtechtzeit-

Computer-Grafik eingeteilt werden. Der Unterschied liegt dabei in der benötigten Zeit für die 

Bildberechnung. Für das Exportieren eines Bildes aus einer CAD-Anwendung ist beispielsweise 

die Dauer der Bildgenerierung nicht weiter relevant. Bei interaktiven Anwendungen allerdings 

(z.B. einem Flugsimulator) ist es essenziell, dass zwischen einer Benutzereingabe und einer 

Reaktion der Anwendung nicht zu viel Zeit vergeht (Nischwitz et al. 2019: S. 25f.). Üblicherweise 

spricht man ab einer Bildwiederholrate von 1 Hz von interaktiver Computer-Grafik. Von einem 

flüssigen Bild kann man aber erst ab ca. 30 Hz sprechen. Das bedeutet das pro Sekunde 30 

Bilder berechnet werden müssen (Nischwitz et al. 2019: S. 26f.). 

Berechnungen wie die aus Kapitel 3.2 müssen dabei für jeden Vertex (Eckpunkt eines Objekts) 

durchgeführt werden. Bei einer entsprechend hohen Anzahl an Vertices müssen dafür Vektoren 
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millionenfach pro Sekunde normalisiert werden. Diese Art der Berechnungen stellen einen 

Flaschenhals in der Computergrafik dar (Aryeh 2020: TC. 00:02:24 – 00:03:00). 

Im Vergleich zur Addition und Multiplikation sind Operationen wie Division und Wurzelziehen auch 

für Computersysteme vergleichsweise zeitaufwändig (Noe 2019). Berechnungen wie die der 

Funktion 𝑓 aus (2-1) in sehr großer Anzahl durchzuführen, erfordert deshalb einen effizienten 

Algorithmus. Der FISR-Algorithmus stellt ein solches ausgeklügeltes Verfahren dar, das speziell 

für die Computergrafik entworfen und eingesetzt wurde (Aryeh 2020: TC. 00:03:00 – 00:03:20). 

4 Darstellung von Zahlen in Computersystemen 

Computersysteme stellen Zahlen intern nicht in dem am meisten verwendeten Stellenwertsystem, 

dem Dezimalsystem, sondern im Binärsystem (auch Dualsystem genannt) dar 

(Hesse 2020: S. 35). Ein Stellenwertsystem definiert dabei die Anzahl und Art der verwendeten 

Ziffern. Das Dezimalsystem kennt die zehn Ziffern 0 – 9, das Binärsystem nur die beiden Ziffern 

0 und 1 (Goll/Dausmann 2014: S. 701). 

Die Anzahl der Ziffern eines Stellenwertsystems wird als Basis 𝑏 ∈ ℕ bezeichnet. Der Ziffernvorrat 

(Menge aller möglichen Ziffern) wird 𝑉 genannt. Für das Binärsystem gilt 𝑏 = 2 und 𝑉 = {0; 1}. 

4.1 Natürliche Zahlen 

Jede Zahl besteht aus einer oder mehreren Stellen. In Computersystemen werden diese Bits 

genannt. Für die Anzahl dieser Stellen gilt: 𝑚 ∈ ℕ. Eine Stelle enthält dabei genau eine Ziffer aus 

dem Ziffernvorrat 𝑉. Die Stellen einer Zahl unterscheiden sich dabei in ihrer Wertigkeit 𝑠𝑛. Für die 

Stelle 𝑛 ∈ ℕ0 gilt (Goll/Dausmann 2014: S. 142): 

 𝑠𝑛 = 2𝑛 (4-1) 

Um den Wert 𝑤𝑛 einer konkreten Stelle in einer Zahl zu berechnen wird der Wert der Ziffer 𝑎𝑛 mit 

der Wertigkeit der Stelle 𝑠𝑛 multipliziert (Goll/Dausmann 2014: S. 142). 

 𝑤𝑛 = 𝑎𝑛 ⋅ 𝑠𝑛 = 𝑎𝑛 ⋅ 2𝑛 (4-2) 

Schlussendlich ergibt sich der Wert 𝑧 einer natürlichen Zahl aus der Addition der Werte aller ihrer 

Stellen (Goll/Dausmann 2014: S. 142). 

 𝑧 = ∑ 𝑤𝑖

𝑚−1

𝑖=0

= ∑ 𝑎𝑖 ⋅ 2𝑖

𝑚−1

𝑖=0

 (4-3) 
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4.2 Fließkommazahlen 

Der FISR-Algorithmus setzt die Darstellung von rationalen Zahlen als Fließkommazahlen nach 

dem Standard IEEE 754 voraus (Lomont 2003: S. 2). Deshalb wird im Folgenden der Aufbau 

einer solchen Zahl beschrieben. 

4.2.1 Abgrenzung zu Festkommazahlen 

Zur Darstellung rationaler Zahlen in Computersystemen existieren verschiedene Konzepte. Die 

wichtigsten und bekanntesten Konzepte sind die der Fließkommazahlen (auch 

Gleitkommazahlen) und der Festkommazahlen. Beide Konzepte speichern dabei den Anteil der 

Zahl vor dem Komma getrennt von dem Anteil nach dem Komma. 

Alle Festkommazahlen desselben Typs haben eine fest definierte Anzahl an Vor- und 

Nachkommastellen. Das Komma befindet sich an einer festen Stelle (Böhme 2013: S. 13). 

Fließkommazahlen dagegen speichern zusätzlich, an welcher Stelle sich das Komma befindet. 

Mathematisch führt das zur sogenannten Exponentialschreibweise (auch wissenschaftliche 

Schreibweise) (Böhme 2013: S. 16). Beispielsweise wird der Betrag der Lichtgeschwindigkeit 𝑐 

in Dezimalschreibweise in der Physik oft als Gleitkommazahl angegeben. 

 𝑐 = 2,99792458 ⋅ 108
𝑚

𝑠
 (4-4) 

2,99792458 ist hierbei die Mantisse, 10 die Basis des Stellenwertsystems und 8 der Exponent. 

Außerdem liegt hier die Mantisse in ihrer normalisierten Form vor. Eine Mantisse 𝑚 ∈ ℚ0
+ ist in 

einem Stellenwertsystem mit der Basis 𝑏 normalisiert, wenn gilt (Wikipedia (Hg.) 2022a): 

 1 ≤ 𝑚 < 𝑏 (4-5) 

4.2.2 Binäre Fließkommazahlen 

Eine ähnliche Darstellung lässt sich auch für das Binärsystem umsetzen. Eine Fließkommazahl 

besteht dabei aus einer Mantisse 𝑚 ∈ ℚ0
+ und einem Exponenten 𝑒 ∈ ℤ. Der Wert der rationalen 

Zahl 𝑥 berechnet sich daher wie folgt (Moroz et al. 2016: S. 2): 

 𝑥 = 𝑚 ⋅ 2𝑒 (4-6) 

In Computersystemen steht zur Speicherung von Mantisse und Exponent jeweils nur eine 

begrenzte Anzahl an Stellen (Bits) zur Verfügung. Ein Standard legt deshalb fest, welche Anzahl 

an Bits jeder Teil hat und wie diese zu interpretieren sind. Abbildung 4-1 zeigt den Aufbau einer 

32-Bit Fließkommazahl nach IEEE 754 (Goll/Dausmann 2014: S. 144). 
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𝑆 𝐸 𝑀 

1 8 23 

𝑆 ∈ {0; 1};  𝐸 ∈ {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 28};  𝑀 ∈ {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 223} 

Abbildung 4-1 zeigt den Aufbau einer 32-Bit Fließkommazahl nach IEEE 754. 

Zeile 1 gibt den Namen des Bestandteils, Zeile 2 die Anzahl der Bits für diesen Bestandteil an. Jeder 

Bestandteil ist dabei als natürliche binäre Zahl gespeichert. 

𝑆: Sign-Bit (Vorzeichen-Bit) 

𝐸: Exponent 

𝑀: Mantisse 

Das Sign-Bit gibt das Vorzeichen der Fließkommazahl an. Der FISR-Algorithmus operiert 

ausschließlich auf positiven Zahlen (Moroz et al. 2016: S. 3). Im Folgenden wird daher stets 

𝑆 = 0 angenommen und das Sign-Bit deshalb nicht in die Berechnungen mit einbezogen. 

Der Standard IEEE 754 kennt zwar auch nicht normalisierte Mantissen, der FISR-Algorithmus 

setzt jedoch eine normalisierte Mantisse voraus (Aryeh 2020: TC. 00:09:07 – 00:09:40). Auf die 

Beschreibung der denormalisierten Gleitkommazahlen wird deshalb verzichtet. Für eine 

normalisierte Mantisse 𝑚 gilt nach (4-5) im Binärsystem: 

 1 ≤ 𝑚 < 2 (4-7) 

Die erste Stelle der Mantisse im Binärsystem ist damit immer 1. Daher muss diese nicht 

mitgespeichert werden (Goll/Dausmann 2014: S. 146). 𝑚 berechnet sich daher aus 𝑀 wie folgt: 

 𝑚 = 1 +
𝑀

223 (4-8) 

Um auch negative Exponenten 𝑒 und damit sehr kleine Fließkommazahlen darstellen zu können, 

wird der Exponent 𝐸 um ein sog. Bias verkleinert (Goll/Dausmann 2014: S. 145). 

 𝑒 = 𝐸 − 127 (4-9) 

Für den Wert einer positiven normalisierten 32-Bit Fließkommazahl 𝑥 nach IEEE 754 gilt somit 

insgesamt: 

 𝑥 = (1 +
𝑀

223) ⋅ 2𝐸−127 (4-10) 
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Das Bitmuster einer Fließkommazahl nach Abbildung 4-1 kann auch als natürliche Zahl 𝑧 mit 32 

binären Stellen interpretiert werden (Moroz et al. 2016: S. 3). Diese Uminterpretation erscheint 

zwar auf den ersten Blick nicht sinnvoll, jedoch macht sich der FISR-Algorithmus genau diese zu 

Nutze. 

 𝑧 = 𝐸 ⋅ 223 + 𝑀 (4-11) 

Das erläuterte Konzept lässt sich genauso auf 64-Bit Gleitkommazahlen übertragen, die ebenfalls 

im Standard IEEE 754 beschrieben werden (Lomont 2003: S. 2). Die Konstanten für die 

Berechnung können dem Standard entnommen werden. Aus Gründen der Übersichtlichkeit wird 

jedoch in allen folgenden Darlegungen auf 64-Bit Gleitkommazahlen verzichtet. 

4.2.3 Menge der Fließkommazahlen 

Die Menge der Fließkommazahlen stellt eine Teilmenge der rationalen Zahlen dar. Im Folgenden 

wird daher die Menge 𝐹 aller positiven normalisierten 32-Bit Fließkommazahlen nach IEEE 754 

definiert, auf die in den folgenden Kapiteln immer wieder Bezug genommen wird. Der Exponent 

𝐸 darf dabei weder seinen minimalen Wert 0 noch seinen maximalen Wert 28 − 1 annehmen, da 

es sich in diesen Fällen nicht um eine normalisierte Zahl handelt (Goll/Dausmann 2014: S. 145). 

 

𝐹 = {(1 +
𝑀

223) ⋅ 2𝐸−127|𝑀 ∈ 𝐴; 𝐸 ∈ 𝐵} 

𝐴 = {𝑥|𝑥 ∈ ℕ0 ∧ 𝑥 < 223} 

𝐵 = {𝑥|𝑥 ∈ ℕ ∧ 𝑥 < 28 − 1} 

(4-12) 

5 Approximation der binären Logarithmus-Funktion 

Der Geschwindigkeitsvorteil des FISR-Algorithmus liegt insbesondere in der Genauigkeit der 

ersten Näherung an den Funktionswert 𝑓(𝑥) aus (2-1) (Moroz et al. 2016: S. 1f.). Dabei wird eine 

Linearisierung einer binären Logarithmusfunktion verwendet. 

5.1 Linearisierung 

Gegeben seien das Intervall 𝐼, die Funktion 𝑔 und die Funktionenscharen ℎµ und 𝑑µ mit µ ∈ ℝ 

(Aryeh 2020: TC. 00:10:50 – 00:11:10). 
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 𝐼 = [0; 1] (5-1) 

 𝑔(𝑥) = log2(𝑥 + 1) (5-2) 

 ℎµ(𝑥) = 𝑥 + µ (5-3) 

 𝑑µ(𝑥) = 𝑔(𝑥) − ℎµ(𝑥) = log2(𝑥 + 1) − 𝑥 − µ =
ln(𝑥 + 1)

ln(2)
− 𝑥 − µ (5-4) 

 𝐷𝑔 = 𝐷ℎµ
= 𝐷𝑑µ

= 𝐼 (5-5) 

Satz 5-1: Für µ ∈ [0; 2µ0] gilt die folgende Approximation: 

𝑔(𝑥) ≈ ℎµ(𝑥), ∀ 𝑥 ∈ 𝐼 ⇔ 𝑑µ(𝑥) ≈ 0, ∀ 𝑥 ∈ 𝐼 

Für 

µ = µ0 =
1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
 

ist die maximale Abweichung von 𝑑µ(𝑥) zu 0 minimal. 

 

Abbildung 5-1 zeigt die Graphen 𝐺𝑔 , 𝐺ℎ0
 und 𝐺𝑑0

 der Funktionen 𝑔, ℎ0 und 𝑑0 für µ = 0. 

𝐺𝑑0
 hat Nullstellen für 𝑥 = 0 ∨ 𝑥 = 1. Dazwischen erreicht der Graph seinen absoluten Hochpunkt. 

Für µ > 0 wird der Graph der Funktion ℎ0 nach oben, und damit der Graph der Funktion 𝑑0 nach unten 

verschoben. 



Paul Schulz 2023 11 

Beweis: 

Es gilt zunächst µ = 0. Das geübte Auge erkennt schnell, dass die Ränder der Definitionsmenge 

von 𝑑0 die beiden Nullstellen der Funktion sind (Aryeh 2020: TC. 00:11:00 – 00:11:05). 

 

𝑑0(𝑥) = 0 ⇔ log2(𝑥 + 1) − 𝑥 = 0 ⇔ 𝑥 = 0 ∨ 𝑥 = 1 

𝑥𝑚𝑖𝑛,1 = 0; 𝑥𝑚𝑖𝑛,2 = 1 

(5-6) 

Die beiden Nullstellen sind die absoluten Tiefpunkte des Graphen von 𝐺𝑑0
. Zwischen den beiden 

Nullstellen erreicht die Funktion für 𝑥𝑚𝑎𝑥 ∈ 𝐼 ihren Maximalwert. Die Extremstellen können 

allgemein durch das Monotonieverhalten der Funktion 𝑑µ nachgewiesen werden. 

 
𝑑µ

′ (𝑥) =

1
𝑥 + 1
ln(2)

− 1 =
1

ln(2) ⋅ (𝑥 + 1)
− 1 

𝐷𝑑µ
′ = ]0; 1[ 

(5-7) 

 

𝑑µ
′ (𝑥𝑚𝑎𝑥) = 0 ⇔

1

ln(2) ⋅ (𝑥𝑚𝑎𝑥 + 1)
− 1 = 0 ⇔ ln(2) ⋅ (𝑥𝑚𝑎𝑥 + 1) = 1 

⇔ ln(2) ⋅ 𝑥𝑚𝑎𝑥 + ln(2) = 1 

⇔ 𝑥𝑚𝑎𝑥 =
1

ln(2)
− 1 

(5-8) 

Da es sich bei der gefundenen Nullstelle 𝑥𝑚𝑎𝑥 der Ableitung um eine einfache Nullstelle handelt, 

wechselt die Funktion 𝑑µ
′  an der Nullstelle ihr Vorzeichen. Für das Monotonieverhalten gilt daher: 

 

𝑑µ 𝑖𝑠𝑡 𝑠. 𝑚. 𝑧𝑢𝑛𝑒ℎ𝑚𝑒𝑛𝑑 𝑖𝑛 ]0; 𝑥𝑚𝑎𝑥] 

𝑑µ 𝑖𝑠𝑡 𝑠. 𝑚. 𝑎𝑏𝑛𝑒ℎ𝑚𝑒𝑛𝑑 𝑖𝑛 [𝑥𝑚𝑎𝑥; 1[ 

(5-9) 

Für µ > 0 wird der Graph der Funktion 𝑑0 lediglich nach unten verschoben. Damit die maximale 

Abweichung von 𝑑µ(𝑥) zu 0 minimal wird, muss daher folgende Bedingung erfüllt sein: 

 

−𝑑µ(𝑥𝑚𝑖𝑛,1) = 𝑑µ(𝑥𝑚𝑎𝑥) 

⇔ − (
ln(0 + 1)

ln(2)
− 0 − µ) =

ln (
1

ln(2)
− 1 + 1)

ln(2)
−

1

ln(2)
+ 1 − µ 

⇔ µ =
ln(1) − ln(ln(2)) − 1

ln(2)
+ 1 − µ 

(5-10) 
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⇔ 2µ = 1 −
1 + ln(ln(2))

ln(2)
 

⇒ µ = µ0 =
1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
≈ 0,043 

Als minimierte maximale Abweichung 𝑑̂ der Funktion 𝑑µ0
 zu 0 ergibt sich somit: 

 

𝑑̂ = |𝑑µ0
(0)|=| log2(0 + 1) − 0 − [

1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
] | =

1

2
−

1 + ln(ln(2))

2 ⋅ ln(2)
 

= µ0 ≈ 0,043 

(5-11) 

Diese maximale Abweichung ist hinreichend genau für die Approximation aus Satz 5-1. 

∎ 

5.2 Der binäre Logarithmus einer Fließkommazahl 

Mithilfe der gefundenen Approximation aus Satz 5-1 lässt sich der binäre Logarithmus einer 

Fließkommazahl annähernd berechnen (Willberger 2019). 

Satz 5-2: Sei 𝑥 ∈ 𝐹 eine Fließkommazahl nach (4-12) und 𝑧 die Interpretation von 𝑥 als natürliche 

Zahl nach (4-11), so gilt nach Anwendung von Satz 5-1 die folgende Approximation: 

log2(𝑥) ≈
1

223 ⋅ 𝑧 + µ − 127 

Beweis: 

Zunächst wird die Zahl 𝑥 in die Funktion des binären Logarithmus eingesetzt und der entstehende 

Term vereinfacht. Dabei wird der Term zur Berechnung einer Fließkommazahl aus (4-10) 

verwendet (Aryeh 2020: TC. 00:10:30 – 00:10:40). 

 log2(𝑥) = log2 [(1 +
𝑀

223
) ⋅ 2𝐸−127] = log2 (1 +

𝑀

223
) + 𝐸 − 127 (5-12) 

Der übriggebliebene Logarithmus-Term entspricht der Funktion 𝑔 aus (5-2). Auch die 

Definitionsmenge der Funktion 𝑔 wird eingehalten, da nach (4-7) und (4-8) stets gilt: 

 0 ≤
𝑀

223 < 1 (5-13) 

Daher lässt sich nun auch die Approximation aus Satz 5-1 für den Logarithmus-Term einsetzen 

(Willberger 2019). 
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log2(𝑥) ≈
𝑀

223 + µ + 𝐸 − 127 

⇔ log2(𝑥) ≈
1

223 ⋅ (𝐸 ⋅ 223 + 𝑀) + µ − 127 

(5-14) 

Der ausgeklammerte Term entspricht der natürlichen Zahl 𝑧. Der Logarithmus von 𝑥 lässt sich 

daher direkt mit 𝑧 approximieren. 

 log2(𝑥) ≈
1

223 ⋅ 𝑧 + µ − 127 (5-15) 

∎ 

6 Das Newton-Verfahren 

Das Newton-Verfahren ist ein iterativer Algorithmus zur Bestimmung von Nullstellen stetig 

differenzierbarer Funktionen. Ausgehend von einer Stelle 𝑥0, die sich in der Nähe einer Nullstelle 

der Funktion befindet, wird in jedem Schritt (Iteration) des Algorithmus eine Annäherung 𝑥𝑛 an 

die Nullstelle berechnet. Das Ergebnis des vorherigen Schritts wird dabei für den nächsten Schritt 

verwendet. Die Nullstelle wird deshalb nicht exakt, sondern nur näherungsweise bestimmt 

(Approximation) (Hesse 2020: S. 53f.). 

6.1 Grafische Herleitung 

Sei 𝑓: ℝ ⟼ ℝ eine stetig differenzierbare Funktion mit ihrem Graphen 𝐺𝑓 und sei 𝑧 ∈ ℝ eine 

Nullstelle der Funktion 𝑓. 

Das Newton-Verfahren nähert sich einer Nullstelle durch Linearisierung der Funktion 𝑓 an der 

Stelle 𝑥0 an. Linearisierung bedeutet, dass die Funktion 𝑓 durch eine lineare Funktion 𝑔 um die 

Stelle 𝑥0 angenähert wird. Die Linearisierung entspricht der Tangente an den Graphen 𝐺𝑓 an der 

Stelle 𝑥0. Für die linearisierte Funktion gilt daher (Hesse 2020: S. 53): 

 

𝑔(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥 − 𝑥0) 

𝐷𝑔 = ℝ 

(6-1) 

Aufgrund der Annäherung des Graphen 𝐺𝑔 der Funktion 𝑔 an den Graphen 𝐺𝑓, liegt auch die 

Nullstelle von 𝐺𝑔 in der Nähe von 𝑧. Durch Berechnung der Nullstelle 𝑥1 von 𝑔 wird damit eine 

Annäherung an die Nullstelle von 𝑓 berechnet (Hesse 2020: S. 53). 
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 𝑔(𝑥1) = 0 ⟺ 𝑓(𝑥0) + 𝑓′(𝑥0) ⋅ (𝑥1 − 𝑥0) = 0 ⟺ 𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 (6-2) 

Wurde 𝑥0 richtig gewählt, liegt 𝑥1 nun näher an 𝑧. Der vorherige Schritt kann nun mit 𝑥1 als 

Ausgangswert wiederholt werden, wodurch eine höhere Genauigkeit des berechneten Wertes 

erreicht wird. Der Wert der vorherigen Iteration wird jeweils für die nächste Iteration verwendet. 

Allgemein gilt damit für die jeweils nächste Iteration (Hesse 2020: S. 54): 

 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
;  𝑛 ∈ ℕ0 (6-3) 

Im günstigsten Fall konvergiert das Verfahren so gegen 𝑧, was bedeutet, dass sich die Werte von 

𝑥𝑛 asymptotisch der Nullstelle annähern. Allerdings gibt es auch Fälle, in denen das Verfahren 

gegen eine andere Nullstelle von 𝑓 konvergiert oder zwischen zwei Nullstellen pendelt 

(Oszillation) (Wikipedia (Hg.) 2022b). Für den FISR-Algorithmus sind diese Fälle allerdings nicht 

von Bedeutung, weswegen keine weiteren Erläuterungen dazu erfolgen. 

6.2 Berechnung von Termen 

Mithilfe des Newton-Verfahrens können Terme berechnet werden, die sich als Nullstelle einer 

stetig differenzierbaren Funktion darstellen lassen. Für den FISR-Algorithmus von Bedeutung 

sind die Nullstellen der folgenden Funktionenschar (Aryeh 2020: TC. 00:19:10 – 00:19:20): 

 

𝑝𝑎(𝑥) =
1

𝑥2 − 𝑎 

𝐷𝑝𝑎
= ℝ ∖ {0};  𝑎 ∈ ℝ+ 

(6-4) 

Die Nullstellen der Funktionenschar in Abhängigkeit des Parameters 𝑎 lassen sich leicht 

darstellen. 

 𝑝𝑎(𝑥) = 0 ⟺
1

𝑥2 − 𝑎 = 0 ⟺ 𝑥 = ±
1

√𝑎
 (6-5) 

Ist bereits eine Näherung für den Term 
1

√𝑎
 bekannt, lässt sich mit wenigen Iterationen des Newton-

Verfahrens ein wesentlich genauerer Wert berechnen. 
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7 Der Algorithmus 

Dieses Kapitel hat zum Zweck, den FISR-Algorithmus auf Grundlage der Erkenntnisse aus den 

vorangegangenen Kapiteln herzuleiten, zu erklären und zu beweisen. Gegeben sei dafür 

zunächst die Funktion 𝑓 aus (2-1) mit der Definitionsmenge 𝐷𝑓 = 𝐹 aus (4-12). Ziel des 

Algorithmus ist die Berechnung einer möglichst genauen Approximation 𝑦 ∈ 𝐹 an 𝑓(𝑥) für ein 

gegebenes 𝑥 der Definitionsmenge. 

Der Ablauf des Algorithmus kann in zwei Teilbereiche aufgeteilt werden (Lomont 2003: S. 3): 

1. Berechnen einer ersten Annäherung 𝑦0 ∈ 𝐹 an 𝑓(𝑥) 

2. Berechnen weiterer Annäherungen an 𝑓(𝑥) durch Iterationen des Newton-Verfahrens. 

Dabei dient 𝑦0 als Startwert für die erste Iteration. 

7.1 Berechnen der ersten Annäherung 

Es werden folgende Festlegungen getroffen: 𝑥 ∈ 𝐹 und 𝑦0 ∈ 𝐹 sind Fließkommazahlen nach 

(4-12). Ihre Mantissen und Exponenten heißen 𝑀𝑥 und 𝐸𝑥 bzw. 𝑀𝑦0 und 𝐸𝑦0. Die Zahlen 𝑧𝑥 und 

𝑧𝑦0 sind die Interpretationen von 𝑥 und 𝑦0 als natürliche Zahlen nach (4-11). 

Satz 7-1: Ist die Approximation aus Satz 5-2 anwendbar, so gilt: 

𝑧𝑦0 = 𝑐 −
1

2
⋅ 𝑧𝑥 

⇔ 𝐸𝑦0 ⋅ 223 + 𝑀𝑦0 = 𝑐 −
1

2
⋅ (𝐸𝑥 ⋅ 223 + 𝑀𝑥) 

𝑐 = 3 ⋅ 222 ⋅ (127 − µ) 

Für die Interpretation des Bitmusters von 𝑧𝑦0 als Fließkommazahl 𝑦0 gilt: 

𝑦0 ≈ 𝑓(𝑥) 

Beweis: 

Es wird zunächst von der zu beweisenden Gleichung ausgegangen. 

 𝑦0 ≈ 𝑓(𝑥) ⇔ 𝑦0 ≈
1

√𝑥
⇔ 𝑦0 ≈ 𝑥− 

1
2 (7-1) 

Anschließend wird der binäre Logarithmus auf beide Seiten angewandt und die Gleichung 

vereinfacht (Aryeh 2020: TC. 00:15:50 – 00:16:10). 
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 log2(𝑦0) ≈ log2 (𝑥− 
1
2) ⇔ log2(𝑦0) ≈ −

1

2
⋅ log2(𝑥) (7-2) 

Da auf beiden Seiten der Gleichung der binäre Logarithmus einer Fließkommazahl stehen bleibt, 

kann die Approximation aus Satz 5-2 eingesetzt werden (Willberger 2019). Die entstehende 

Gleichung dient zur Berechnung von 𝑧𝑦0. Daher wird nun das Gleichheitszeichen verwendet. 

 
1

223 ⋅ 𝑧𝑦0 + µ − 127 = −
1

2
⋅ (

1

223 ⋅ 𝑧𝑥 + µ − 127) (7-3) 

Die Gleichung kann nun nach 𝑧𝑦0 umgestellt werden (Willberger 2019). 

 

1

223 ⋅ 𝑧𝑦0 = −
1

2
⋅ (

1

223 ⋅ 𝑧𝑥 + µ − 127) − µ + 127 

⇔ 𝑧𝑦0 = −222 ⋅ (
1

223 ⋅ 𝑧𝑥 + µ − 127) − µ ⋅ 223 + 127 ⋅ 223 

⇔ 𝑧𝑦0 = −
1

2
⋅ 𝑧𝑥 − µ ⋅ 222 + 127 ⋅ 222 − µ ⋅ 223 + 127 ⋅ 223 

(7-4) 

Die konstanten Terme auf der rechten Seite der Gleichung können als Konstante 𝑐 ausgelagert 

werden (Aryeh 2020: TC. 00:17:00 – 00:17:20). 

 

𝑧𝑦0 = 𝑐 −
1

2
⋅ 𝑧𝑥 

𝑐 = −µ ⋅ 222 + 127 ⋅ 222 − µ ⋅ 223 + 127 ⋅ 223 

= 127 ⋅ (222 + 223) − µ ⋅ (222 + 223) = (222 + 223) ⋅ (127 − µ) 

= 222 ⋅ (1 + 2) ⋅ (127 − µ) = 3 ⋅ 222 ⋅ (127 − µ) 

(7-5) 

∎ 

Für die Berechnung von 𝑦0 mithilfe des gezeigten Verfahrens ist es wichtig zu verstehen, dass 

durch die Gleichung aus Satz 7-1 nicht 𝑦0 direkt, sondern lediglich die natürliche Zahl 𝑧𝑦0 

berechnet wird. 

Um im Dezimalsystem die Komponenten von 𝑦0 (𝐸𝑦0 und 𝑀𝑦0) zu erhalten, müsste die Gleichung 

zuerst nach diesen umgestellt und diese einzeln berechnet werden. Der Standard IEEE 754 stellt 

jedoch für das Binärsystem sicher, dass die Bitfolge von 𝑧𝑦0 genau der Bitfolge von 𝑦0 entspricht. 

Dies wurde bereits in (4-11) gezeigt. Für Computersysteme entsteht so kein zusätzlicher 

Rechenaufwand, da die ohnehin berechnete natürliche Zahl 𝑧𝑦0 einfach als Fließkommazahl 

interpretiert werden kann. 
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7.2 Anwendung des Newton-Verfahrens 

Wie bereits in Kapitel 6.2 gezeigt, lassen sich die Werte der Funktion 𝑓 als Nullstellen der 

Funktionenschar 𝑝𝑎 aus (6-4) darstellen. Da die Variable 𝑥 bereits als Argument für den 

Algorithmus als Ganzes verwendet wird, wird die Funktion 𝑝𝑥 wie folgt definiert 

(Aryeh 2020: TC. 00:19:10 – 00:19:20): 

 

𝑝𝑥(𝑦) =
1

𝑦2 − 𝑥 

𝐷𝑝𝑥
= ℝ ∖ {0};  𝑥 ∈ 𝐹 

(7-6) 

Für die Ableitung von 𝑝𝑥 gilt damit: 

 

𝑝𝑥
′ (𝑦) = −

2𝑦

𝑦4 = −
2

𝑦3 

𝐷𝑝𝑥
′ = ℝ ∖ {0} 

(7-7) 

Für eine Newton-Iteration gilt nach (6-3): 

 

𝑦𝑛+1 = 𝑦𝑛 −
𝑝𝑥(𝑦𝑛)

𝑝𝑥
′ (𝑦𝑛)

;  𝑛 ∈ ℕ0 

⇔ 𝑦𝑛+1 = 𝑦𝑛 −

1
𝑦𝑛

2 − 𝑥

−
2

𝑦𝑛
3

= 𝑦𝑛 +

(
1

𝑦𝑛
2 − 𝑥) ⋅ 𝑦𝑛

3

2
= 𝑦𝑛 +

𝑦𝑛 − 𝑥 ⋅ 𝑦𝑛
3

2
=

3

2
𝑦𝑛 −

𝑥 ⋅ 𝑦𝑛
3

2
 

=
1

2
𝑦𝑛 ⋅ (3 − 𝑥 ⋅ 𝑦𝑛

2) 

(7-8) 

Als Startwert für die erste Iteration wird die Approximation 𝑦0 aus Kapitel 7.1 verwendet. Danach 

können weitere Iterationen durchgeführt werden, um ein genaueres Ergebnis zu erhalten. 

8 Effizienz der Berechnungen 

Wie bereits in Kapitel 3.3 beschrieben, soll der FISR-Algorithmus einen Geschwindigkeitsvorteil 

gegenüber der herkömmlichen Berechnung bieten. Dieser Vorteil des Algorithmus kommt 

allerdings auf Kosten der Genauigkeit zustande (McEniry 2007: S. 1). Im folgenden Kapitel wird 

daher die Effizienz des Algorithmus diskutiert. 
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8.1 Geschwindigkeit 

Zur Zeit der Entwicklung des Algorithmus war er ca. vier Mal so schnell wie eine 

Standardimplementierung der Berechnung in vielen Programmiersprachen (Lomont 2003: S. 1). 

Die hohe Performance des Verfahrens kommt vor allem dadurch zustande, dass ein 

Computersystem für die Berechnung keinerlei Division durchführen muss 

(Aryeh 2020: TC. 00:02:40 – 00:03:00). 

Dass Divisionen langsamer sind als Multiplikationen, liegt vor allem daran, dass Divisionen nur 

schwer parallelisiert werden können. Für die Multiplikation gelten sowohl das Assoziativ- als auch 

das Kommutativgesetz. Diese Gesetze gelten nicht für die Division. So kann die Multiplikation 

zweier Zahlen in viele kleinere Multiplikationen und Additionen zerlegt werden, die parallel 

berechnet werden können. Bei der Division ist das nicht ohne weiteres möglich (Noe 2019). 

In der Formel für eine Newton-Iteration aus (7-8) kommt zwar mit 1 2⁄  ein Bruch vor. Da es sich 

allerdings um einen konstanten Faktor handelt, kann dieser problemlos durch eine Multiplikation 

mit 0,5 ersetzt werden. 

Der Bruch 1 2⁄  kommt auch in der Formel zur Berechnung von 𝑧𝑦0 aus Satz 7-1 vor. Dabei geht 

es allerdings um die Berechnung einer natürlichen Zahl, so dass sich hier anders beholfen 

werden kann. Wird bei einer Dezimalzahl das Komma um eine Stelle verschoben, kommt dies 

einer Multiplikation mit bzw. Division durch 10 gleich. Im Binärsystem führt eine Verschiebung 

des Kommas zu einer Multiplikation mit bzw. Division durch 2. Mit sogenannten Bitshifts kann 

somit sehr einfach durch 2 geteilt werden (McEniry 2007: S. 3). 

8.2 Genauigkeit 

Die Genauigkeit des Verfahrens hängt stark von der Konstante µ aus Satz 5-1 und damit auch 

von der Konstante 𝑐 aus Satz 7-1 ab. Obwohl die Konstante aus (5-10) die beste Annäherung an 

die Logarithmus-Funktion darstellt, ist sie nicht die beste Konstante für den Algorithmus. Das hat 

den Grund, dass die Annäherung nachfolgende Schritte (z.B. die Newton-Iterationen) nicht 

berücksichtigt (Wikipedia (Hg.) 2023). 

Im Laufe der Zeit wurden deshalb andere Konstanten 𝑐 von diversen Mathematikern 

vorgeschlagen. Aufgrund der Größe der Zahlen, werden diese Konstanten üblicherweise im 

Hexadezimal-Format (Stellenwertsystem mit Basis 16) angegeben. Die folgende Tabelle zeigt 

mögliche Konstanten und den dadurch entstehenden Fehler. Die Fehlerwerte wurden im Rahmen 

dieser Seminararbeit selbst ermittelt. Die Konstanten stammen allerdings aus anderen 

mathematischen Arbeiten. Ihr Ursprung ist in der letzten Spalte angegeben. 
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𝑐 µ 

𝑦0 𝑦1 

Quelle Maximaler 

Fehler (%) 

Durchschn. 

Fehler (%) 

Maximaler 

Fehler (%) 

Durchschn. 

Fehler (%) 

5𝐹3759𝐷𝐹16 0,0450466 3,438 2,327 0,175 0,095 
(id Software 

(Hg.) 2012) 

5𝐹37𝐵𝐶𝐵616 0,0430357 3,638 2,444 0,201 0,105 
µ0 aus Satz 

5-1 

5𝐹375𝐴8616 0,0450333 3,437 2,328 0,175 0,095 
(Moroz et al. 

2016: S. 10) 

Abbildung 8-1 zeigt verschiedene Konstanten 𝑐 und den dadurch entstehenden Fehler über alle positiven 

normalisierten 32-Bit Fließkommazahlen nach IEEE 754. Die Werte sind gerundet. 

𝑦0 ist die Annäherung nach Satz 7-1. 

𝑦1 ist die Verbesserung durch eine Newton-Iteration. 

Man erkennt, dass bereits nach der ersten Newton-Iteration der maximale relative Fehler bei ca. 

0,2 % liegt. Für viele Anwendungen in der Computer-Grafik ist das schon ausreichend genau 

(Willberger 2019). 

8.3 Heutige Relevanz 

Obwohl der Geschwindigkeitsvorteil zur Zeit der Entwicklung des FISR-Algorithmus groß war, 

spielt der Algorithmus heute eine eher untergeordnete Rolle. Dies liegt vor allem daran, dass viele 

Hardware-Hersteller Algorithmen für die Berechnung der reziproken Quadratwurzel in ihre 

Produkte integriert haben. Die Berechnungen werden dabei von der Hardware selbst unterstützt 

(McEniry 2007: S. 1). Bei dem FISR-Algorithmus handelt es sich um eine reine Software-

Implementierung. 

Mit dem Assembler-Befehl rsqrtss steht ein solcher Algorithmus heute auf den weit verbreiteten 

x86-Prozessoren zur Verfügung. Auch dieser Befehl berechnet lediglich eine Approximation an 

den Wert der reziproken Quadratwurzel. Jedoch schlägt dieser den FISR-Algorithmus in Sachen 

Geschwindigkeit und Genauigkeit (Elan 2009). Auch für viele ARM-Prozessoren, die vor allem in 

kleineren Systemen Verwendung finden, steht heute ein ähnlicher Assembler-Befehl zur 

Verfügung (Arm Limited (Hg.) 2021). 

Für Systeme jedoch, die über keine zusätzliche Hardware-Beschleunigung verfügen, kann der 

Einsatz des Algorithmus auch heute noch sinnvoll sein. 
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9 Schlussbemerkung 

Diese Seminararbeit kratzt lediglich an der Oberfläche der mathematischen 

Forschungsmöglichkeiten, die der FISR-Algorithmus bietet. Das Verfahren verfügt über weiteres 

Optimierungspotential. So wurde beispielsweise ein angepasstes Newton-Verfahren eigens für 

diesen Algorithmus entwickelt. Auch mit der Herleitung verschiedener Konstanten 𝑐 haben 

diverse Autoren mathematische Werke gefüllt. 

Wenngleich das Verfahren heutzutage in der Computergrafik eine kleinere Rolle spielt, so bleibt 

es doch ein mathematisch faszinierender Algorithmus. Besonders für Informatikerinnen und 

Informatiker bietet der Algorithmus die Gelegenheit, über den eigenen Tellerrand 

hinauszuschauen und in der Mathematik – neben bewährten Konzepten – neue, bessere 

Lösungen für alte Probleme zu finden. 

An dieser Stelle sei noch einmal an die Demo-Website unter https://fisr.schulz-paul.de erinnert. 

Nach der Lektüre dieser Arbeit stellt sie eine gute Gelegenheit dar, die theoretisch gewonnenen 

Erkenntnisse praktisch nachzuvollziehen. 

  

https://fisr.schulz-paul.de/
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10 Abbildungsverzeichnis 

Abbildung 1-1 zeigt den Quellcode einer Funktion aus dem Spiel Quake III Arena in leicht 

abgewandelter Form. Der Ausschnitt ist in der Programmiersprache C geschrieben. 

Quelle: https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552

 ......................................................................................................................................................... 1 

Abbildung 3-1 zeigt den Einfall eines Lichtstrahls 𝑙 auf eine ebene Oberfläche mit dem 

Flächeninhalt 𝐴. Der Lichtvektor zeigt dabei zur Lichtquelle hin. 𝑛 ist der Normalenvektor auf die 

Oberfläche. Die Skizze dient als Grundlage der Berechnung. 

Quelle: Selbst erstellt, inspiriert von (Nischwitz et al. 2019: S. 334) .............................................. 4 

Abbildung 4-1 zeigt den Aufbau einer 32-Bit Fließkommazahl nach IEEE 754. Zeile 1 gibt den 

Namen des Bestandteils, Zeile 2 die Anzahl der Bits für diesen Bestandteil an. Jeder 

Bestandteil ist dabei als natürliche binäre Zahl gespeichert. 𝑆: Sign-Bit (Vorzeichen-Bit) 𝐸: 

Exponent 𝑀: Mantisse 

Quelle: Selbst erstellt, inspiriert von (Goll/Dausmann 2014: S. 144) ............................................. 8 

Abbildung 5-1 zeigt die Graphen 𝐺𝑔, 𝐺ℎ0 und 𝐺𝑑0 der Funktionen 𝑔, ℎ0 und 𝑑0 für µ = 0. 𝐺𝑑0 

hat Nullstellen für 𝑥 = 0 ∨ 𝑥 = 1. Dazwischen erreicht der Graph seinen absoluten Hochpunkt. 

Für µ > 0 wird der Graph der Funktion ℎ0 nach oben, und damit der Graph der Funktion 𝑑0 

nach unten verschoben. 

Quelle: Selbst erstellt .................................................................................................................... 10 

Abbildung 8-1 zeigt verschiedene Konstanten 𝑐 und den dadurch entstehenden Fehler über alle 

positiven normalisierten 32-Bit Fließkommazahlen nach IEEE 754. Die Werte sind gerundet. 𝑦0 

ist die Annäherung nach Satz 7-1. 𝑦1 ist die Verbesserung durch eine Newton-Iteration. 

Quelle: Selbst erstellt. Der Ursprung der Konstanten ist in der letzten Spalte zu finden. ........... 19 
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